研究生: |
石明正 Shih, Ming-Cheng |
---|---|
論文名稱: |
仿肝小葉與肝腺泡之微流體細胞培養晶片 Microfluidic cell-culturing Devices Mimicking Liver Lobule and Acinus |
指導教授: |
劉承賢
Liu, Cheng-Hsien |
口試委員: |
徐琅
Hsu, Long 張傳雄 Chang, Chuan-Hsiung 李昇憲 Li, Sheng-Shian 盧向成 Lu, Shiang-Cheng |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 135 |
中文關鍵詞: | 微流體 、肝細胞 、肝小葉 、肝腺泡 、細胞培養 |
外文關鍵詞: | microfluidic, liver cell, liver lobule, liver acinus, cell culture |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的是希望設計生物反應器能維持rat primary liver cell CYP450活性,希望在反應器中藥物測試呈現有藥劑的濃度的相關影響並與動物體內的呈現一致的結果。
本論文的研究分成兩個部分,第一個部分為組合式的MTR(Micro Tissue Reactor),主要以模擬體內liver loube內特殊的流場結構,提供體外liver cell所需的microenviroment,達到能維持rat primary liver cell CYP450活性,並在反應器中藥物測試呈現有藥劑的濃度的相關影響並與動物體內的呈現一致的趨勢。
第二部分的acinus chip的設計是為了彌補MTR功能的不足,希望能在cell seeding後馬上開始perfusion,不用因為等待細胞貼附的時間,導致CYP450活性快速下降,並且提供cell membrane directly contact的狀態使得能夠進行cell-cell interaction,同時能動態調整或觀測acinus-like gradient的變化,調控shear stress和mass-transfer達到平衡,使體外細胞培養的microenviroment更趨近於體內,維持體外liver細胞解毒功能時間更長,以便於用於藥物毒性篩選。為了方便操作多個acinus chip 進行生物實驗,因此設計了 96 well compatible format,搭配PC通訊控制晶片內medium流動的速度,整合成一套可即時觀測的細胞培養系統。
The objective of this research was to design a micro-bioreactor to sustain the CYP450 activity in the primary rat liver cells and to understand the related impact by the concentration of the applied medications. The study was divided into two parts. The first part involved a micro-tissue reactor (MTR) which primarily simulated the specific flow field structure of the liver lobule to provide a similar microenvironment to the liver cells outside the body. The purpose was to sustain and observe the effect of drug concentrations on the CYP450 activity in the primary rat liver cells under an in vitro environment that is comparable to the true physiological conditions.
In the second part, the design of the acinus chip was to compensate for the inadequacies of the MTR such as cell adherence. The process of cell adherence usually ends with rapid degradation of the CYP450 activity. This new design would give the researchers the option of immediate perfusion after cell seeding without waiting for cell adherence. Also, the acinus chip could provide direct contact with the cell membrane which allows researchers to observe cell-to-cell interactions. In addition to providing the feature of dynamic control for observing the acinus-like gradient change, the acinus chip could also control and balance the shear stress and mass-transfer of the microenvironment. The end result is an in vitro microenvironment that closely resembled the true physiological state. The design allowed liver cells to maintain cytotoxic detoxification function even outside the body, and thus, made drug toxicity studies more convenient.
[1] J. W. Allen, and S. N. Bhatia, “Improving the next generation of bioartificial liver devices,” Semin Cell Dev Biol, vol. 13, no. 6, pp. 447-54, Dec, 2002.
[2] M. J. Powers, K. Domansky, M. R. Kaazempur-Mofrad et al., “A microfabricated array bioreactor for perfused 3D liver culture,” Biotechnol Bioeng, vol. 78, no. 3, pp. 257-69, May 5, 2002.
[3] A. W. Tilles, F. Berthiaume, M. L. Yarmush et al., “Bioengineering of liver assist devices,” J Hepatobiliary Pancreat Surg, vol. 9, no. 6, pp. 686-96, 2002.
[4] M. L. Yarmush, J. C. Dunn, and R. G. Tompkins, “Assessment of artificial liver support technology,” Cell Transplant, vol. 1, no. 5, pp. 323-41, 1992.
[5] A. J. Ellis, R. D. Hughes, J. A. Wendon et al., “Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure,” Hepatology, vol. 24, no. 6, pp. 1446-51, Dec, 1996.
[6] F. D. Watanabe, C. J. Mullon, W. R. Hewitt et al., “Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase I clinical trial,” Ann Surg, vol. 225, no. 5, pp. 484-91; discussion 491-4, May, 1997.
[7] J. Park, F. Berthiaume, M. Toner et al., “Microfabricated grooved substrates as platforms for bioartificial liver reactors,” Biotechnol Bioeng, vol. 90, no. 5, pp. 632-44, Jun 5, 2005.
[8] A. W. Tilles, H. Baskaran, P. Roy et al., “Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor,” Biotechnol Bioeng, vol. 73, no. 5, pp. 379-89, Jun 5, 2001.
[9] S. N. Bhatia, U. J. Balis, M. L. Yarmush et al., “Microfabrication of hepatocyte/fibroblast co-cultures: role of homotypic cell interactions,” Biotechnol Prog, vol. 14, no. 3, pp. 378-87, May-Jun, 1998.
[10] J. W. Allen, S. R. Khetani, and S. N. Bhatia, “In vitro zonation and toxicity in a hepatocyte bioreactor,” Toxicol Sci, vol. 84, no. 1, pp. 110-9, Mar, 2005.
[11] J. W. Allen, R. S. Johnson, and S. N. Bhatia, “Hypoxic inhibition of 3-methylcholanthrene-induced CYP1A1 expression is independent of HIF-1alpha,” Toxicol Lett, vol. 155, no. 1, pp. 151-9, Jan 15, 2005.
[12] J. W. Allen, T. Hassanein, and S. N. Bhatia, “Advances in bioartificial liver devices,” Hepatology, vol. 34, no. 3, pp. 447-55, Sep, 2001.
[13] Y. Wang, T. Susando, X. Lei et al., “Current development of bioreactors for extracorporeal bioartificial liver (Review),” Biointerphases, vol. 5, no. 3, pp. FA116-31, Sep.
[14] L. Xia, S. Ng, R. Han et al., “Laminar-flow immediate-overlay hepatocyte sandwich perfusion system for drug hepatotoxicity testing,” Biomaterials, vol. 30, no. 30, pp. 5927-36, Oct, 2009.
[15] M. H. Wu, S. B. Huang, and G. B. Lee, “Microfluidic cell culture systems for drug research,” Lab Chip, vol. 10, no. 8, pp. 939-56, Apr 21.
[16] E. W. Young, and D. J. Beebe, “Fundamentals of microfluidic cell culture in controlled microenvironments,” Chem Soc Rev, vol. 39, no. 3, pp. 1036-48, Mar.
[17] K. J. Regehr, M. Domenech, J. T. Koepsel et al., “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab Chip, vol. 9, no. 15, pp. 2132-9, Aug 7, 2009.
[18] I. Meyvantsson, and D. J. Beebe, “Cell culture models in microfluidic systems,” Annu Rev Anal Chem (Palo Alto Calif), vol. 1, pp. 423-49, 2008.
[19] P. J. Lee, P. J. Hung, V. M. Rao et al., “Nanoliter scale microbioreactor array for quantitative cell biology,” Biotechnol Bioeng, vol. 94, no. 1, pp. 5-14, May 5, 2006.
[20] L. G. Griffith, and G. Naughton, “Tissue engineering--current challenges and expanding opportunities,” Science, vol. 295, no. 5557, pp. 1009-14, Feb 8, 2002.
[21] L. G. Griffith, and M. A. Swartz, “Capturing complex 3D tissue physiology in vitro,” Nat Rev Mol Cell Biol, vol. 7, no. 3, pp. 211-24, Mar, 2006.
[22] V. L. Tsang, and S. N. Bhatia, “Fabrication of three-dimensional tissues,” Adv Biochem Eng Biotechnol, vol. 103, pp. 189-205, 2007.
[23] V. L. Tsang, and S. N. Bhatia, “Three-dimensional tissue fabrication,” Adv Drug Deliv Rev, vol. 56, no. 11, pp. 1635-47, Sep 22, 2004.
[24] P. J. Lee, P. J. Hung, and L. P. Lee, “An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture,” Biotechnol Bioeng, vol. 97, no. 5, pp. 1340-6, Aug 1, 2007.
[25] D. Di Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab Chip, vol. 6, no. 11, pp. 1445-9, Nov, 2006.
[26] B. Zhang, M. C. Kim, T. Thorsen et al., “A self-contained microfluidic cell culture system,” Biomed Microdevices, vol. 11, no. 6, pp. 1233-7, Dec, 2009.
[27] N. Ferrell, D. Gallego-Perez, N. Higuita-Castro et al., “Vacuum-assisted cell seeding in a microwell cell culture system,” Anal Chem, vol. 82, no. 6, pp. 2380-6, Mar 15.
[28] Y. C. Toh, T. C. Lim, D. Tai et al., “A microfluidic 3D hepatocyte chip for drug toxicity testing,” Lab Chip, vol. 9, no. 14, pp. 2026-35, Jul 21, 2009.
[29] S. M. Ong, C. Zhang, Y. C. Toh et al., “A gel-free 3D microfluidic cell culture system,” Biomaterials, vol. 29, no. 22, pp. 3237-44, Aug, 2008.
[30] C. P. Huang, J. Lu, H. Seon et al., “Engineering microscale cellular niches for three-dimensional multicellular co-cultures,” Lab Chip, vol. 9, no. 12, pp. 1740-8, Jun 21, 2009.
[31] H. Y. Wang, N. Bao, and C. Lu, “A microfluidic cell array with individually addressable culture chambers,” Biosens Bioelectron, vol. 24, no. 4, pp. 613-7, Dec 1, 2008.
[32] R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone et al., “Versatile, fully automated, microfluidic cell culture system,” Anal Chem, vol. 79, no. 22, pp. 8557-63, Nov 15, 2007.
[33] E. S. Park, A. C. Brown, M. A. DiFeo et al., “Continuously perfused, non-cross-contaminating microfluidic chamber array for studying cellular responses to orthogonal combinations of matrix and soluble signals,” Lab Chip, vol. 10, no. 5, pp. 571-80, Mar 7.
[34] L. Wang, X. F. Ni, C. X. Luo et al., “Self-loading and cell culture in one layer microfluidic devices,” Biomed Microdevices, vol. 11, no. 3, pp. 679-84, Jun, 2009.
[35] D. Mazzei, M. A. Guzzardi, S. Giusti et al., “A low shear stress modular bioreactor for connected cell culture under high flow rates,” Biotechnol Bioeng, vol. 106, no. 1, pp. 127-37, May 1.
[36] A. Dash, W. Inman, K. Hoffmaster et al., “Liver tissue engineering in the evaluation of drug safety,” Expert Opin Drug Metab Toxicol, vol. 5, no. 10, pp. 1159-74, Oct, 2009.
[37] N. T. Elliott, and F. Yuan, “A review of three-dimensional in vitro tissue models for drug discovery and transport studies,” J Pharm Sci, vol. 100, no. 1, pp. 59-74, Jan, 2009.
[38] P. M. van Midwoud, E. Verpoorte, and G. M. Groothuis, “Microfluidic devices for in vitro studies on liver drug metabolism and toxicity,” Integr Biol (Camb), vol. 3, no. 5, pp. 509-21, May, 2011.
[39] E. L. LeCluyse, P. L. Bullock, A. Parkinson et al., “Cultured rat hepatocytes,” Pharm Biotechnol, vol. 8, pp. 121-59, 1996.
[40] G. Mehta, C. M. Williams, L. Alvarez et al., “Synergistic effects of tethered growth factors and adhesion ligands on DNA synthesis and function of primary hepatocytes cultured on soft synthetic hydrogels,” Biomaterials, vol. 31, no. 17, pp. 4657-71, Jun, 2010.
[41] T. A. Broughan, R. Naukam, C. Tan et al., “Effects of hepatic zonal oxygen levels on hepatocyte stress responses,” J Surg Res, vol. 145, no. 1, pp. 150-60, Mar, 2008.
[42] J. W. Allen, and S. N. Bhatia, “Formation of steady-state oxygen gradients in vitro: application to liver zonation,” Biotechnol Bioeng, vol. 82, no. 3, pp. 253-62, May 5, 2003.
[43] M.-C. S. Y.-S. W. T.-C. S. R.-J. G. C.-H. Liu, “A Novel Micro-Tissue Reactor for Maintaining Hepatocytes in Vitro,” MEMS 2006 Conference, pp. 458 - 461, 26 January 2006.
[44] Y. Nakao, H. Kimura, Y. Sakai et al., “Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device,” Biomicrofluidics, vol. 5, no. 2, pp. 22212, Jun, 2011.
[45] M. Jain, A. Yeung, and K. Nandakumar, “Induced charge electro-osmotic concentration gradient generator,” Biomicrofluidics, vol. 4, no. 1, pp. 14110, 2010.
[46] R. S. McCuskey, “Sinusoidal endothelial cells as an early target for hepatic toxicants,” Clin Hemorheol Microcirc, vol. 34, no. 1-2, pp. 5-10, 2006.
[47] K. Jungermann, and T. Kietzmann, “Oxygen: modulator of metabolic zonation and disease of the liver,” Hepatology, vol. 31, no. 2, pp. 255-60, Feb, 2000.
[48] K. Jungermann, and N. Katz, “Functional specialization of different hepatocyte populations,” Physiol Rev, vol. 69, no. 3, pp. 708-64, Jul, 1989.
[49] O. Pelkonen, M. Turpeinen, J. Hakkola et al., “Inhibition and induction of human cytochrome P450 enzymes: current status,” Arch Toxicol, vol. 82, no. 10, pp. 667-715, Oct, 2008.
[50] K. O. Lindros, “Zonation of cytochrome P450 expression, drug metabolism and toxicity in liver,” Gen Pharmacol, vol. 28, no. 2, pp. 191-6, Feb, 1997.
[51] Y. A. Chen, A. D. King, H. C. Shih et al., “Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions,” Lab Chip, vol. 11, no. 21, pp. 3626-33, Nov 7, 2011.
[52] B. G. Chung, and J. Choo, “Microfluidic gradient platforms for controlling cellular behavior,” Electrophoresis, vol. 31, no. 18, pp. 3014-27, Sep, 2010.
[53] T. M. Keenan, and A. Folch, “Biomolecular gradients in cell culture systems,” Lab Chip, vol. 8, no. 1, pp. 34-57, Jan, 2008.
[54] F. Lin, C. M. Nguyen, S. J. Wang et al., “Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices,” Ann Biomed Eng, vol. 33, no. 4, pp. 475-82, Apr, 2005.
[55] K. Campbell, and A. Groisman, “Generation of complex concentration profiles in microchannels in a logarithmically small number of steps,” Lab Chip, vol. 7, no. 2, pp. 264-72, Feb, 2007.
[56] D. Irimia, S. Y. Liu, W. G. Tharp et al., “Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients,” Lab Chip, vol. 6, no. 2, pp. 191-8, Feb, 2006.
[57] B. G. Chung, L. A. Flanagan, S. W. Rhee et al., “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip, vol. 5, no. 4, pp. 401-6, Apr, 2005.
[58] J. Y. Park, C. M. Hwang, and S. H. Lee, “Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient,” Lab Chip, vol. 7, no. 12, pp. 1673-80, Dec, 2007.
[59] N. Ye, J. Qin, W. Shi et al., “Cell-based high content screening using an integrated microfluidic device,” Lab Chip, vol. 7, no. 12, pp. 1696-704, Dec, 2007.
[60] Y. Ling, J. Rubin, Y. Deng et al., “A cell-laden microfluidic hydrogel,” Lab Chip, vol. 7, no. 6, pp. 756-62, Jun, 2007.
[61] M. S. Kim, J. H. Yeon, and J. K. Park, “A microfluidic platform for 3-dimensional cell culture and cell-based assays,” Biomed Microdevices, vol. 9, no. 1, pp. 25-34, Feb, 2007.
[62] V. V. Abhyankar, and D. J. Beebe, “Spatiotemporal micropatterning of cells on arbitrary substrates,” Anal Chem, vol. 79, no. 11, pp. 4066-73, Jun 1, 2007.
[63] V. V. Abhyankar, M. W. Toepke, C. L. Cortesio et al., “A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment,” Lab Chip, vol. 8, no. 9, pp. 1507-15, Sep, 2008.
[64] J. Atencia, G. A. Cooksey, and L. E. Locascio, “A robust diffusion-based gradient generator for dynamic cell assays,” Lab on a Chip, vol. 12, no. 2, pp. 309-316, 2012.
[65] T. M. Keenan, C. W. Frevert, A. Wu et al., “A new method for studying gradient-induced neutrophil desensitization based on an open microfluidic chamber,” Lab Chip, vol. 10, no. 1, pp. 116-22, Jan 7, 2010.
[66] B. G. Chung, L. F. Kang, and A. Khademhosseini, “Micro- and nanoscale technologies for tissue engineering and drug discovery applications,” Expert Opinion on Drug Discovery, vol. 2, no. 12, pp. 1653-1668, Dec, 2007.
[67] V. N. Goral, and P. K. Yuen, “Microfluidic Platforms for Hepatocyte Cell Culture: New Technologies and Applications,” Ann Biomed Eng, Oct 29, 2012.
[68] Y. C. Toh, K. Blagovic, and J. Voldman, “Advancing stem cell research with microtechnologies: opportunities and challenges,” Integr Biol (Camb), vol. 2, no. 7-8, pp. 305-25, Aug, 2010.
[69] M. A. Unger, H. P. Chou, T. Thorsen et al., “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, no. 5463, pp. 113-6, Apr 7, 2000.
[70] S. R. Quake, and A. Scherer, “From micro- to nanofabrication with soft materials,” Science, vol. 290, no. 5496, pp. 1536-40, Nov 24, 2000.
[71] M. A. Eddings, and B. K. Gale, “A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices,” Journal of Micromechanics and Microengineering, vol. 16, no. 11, pp. 2396-2402, Nov, 2006.
[72] M. Johnson, G. Liddiard, M. Eddings et al., “Bubble inclusion and removal using PDMS membrane-based gas permeation for applications in pumping, valving and mixing in microfluidic devices,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, Sep, 2009.
[73] H. Nyblom, U. Berggren, J. Balldin et al., “High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking,” Alcohol Alcohol, vol. 39, no. 4, pp. 336-9, Jul-Aug, 2004.
[74] H. Nyblom, E. Bjornsson, M. Simren et al., “The AST/ALT ratio as an indicator of cirrhosis in patients with PBC,” Liver Int, vol. 26, no. 7, pp. 840-5, Sep, 2006.
[75] M. A. Shiffman, M. S. Karlan, W. H. Snyder, Jr. et al., “Gastrointestinal Instillation of Blood; Effects on Liver Functions and Urea Nitrogen in Normal Dogs,” Arch Surg, vol. 89, pp. 411-6, Sep, 1964.
[76] C. Y. Kim, W. Hyun, S. K. Pahk et al., “[The effects of 19-nor-androstenolone phenylpropionate on the serum protein fractions, hematologic changes, blood urea nitrogen and clinical findings in the cases of liver cirrhosis with ascites, G-I disorders and nephritis],” Taehan Naekwa Hakhoe Chapchi, vol. 6, pp. 95-109, Feb, 1963.
[77] J. Park, Y. Li, F. Berthiaume et al., “Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates,” Biotechnol Bioeng, vol. 99, no. 2, pp. 455-67, Feb 1, 2008.
[78] M. Dvir-Ginzberg, I. Gamlieli-Bonshtein, R. Agbaria et al., “Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function,” Tissue Eng, vol. 9, no. 4, pp. 757-66, Aug, 2003.
[79] S. S. Ozturk, and B. O. Palsson, “Effect of initial cell density on hybridoma growth, metabolism, and monoclonal antibody production,” J Biotechnol, vol. 16, no. 3-4, pp. 259-78, Nov, 1990.
[80] S. N. Bhatia, U. J. Balis, M. L. Yarmush et al., “Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells,” Faseb Journal, vol. 13, no. 14, pp. 1883-1900, Nov, 1999.
[81] E. L. LeCluyse, R. P. Witek, M. E. Andersen et al., “Organotypic liver culture models: meeting current challenges in toxicity testing,” Crit Rev Toxicol, vol. 42, no. 6, pp. 501-48, Jul.
[82] T. M. Keenan, C. W. Frevert, A. Wu et al., “A new method for studying gradient-induced neutrophil desensitization based on an open microfluidic chamber,” Lab Chip, vol. 10, no. 1, pp. 116-22, Jan 7.
[83] J. Atencia, G. A. Cooksey, and L. E. Locascio, “A robust diffusion-based gradient generator for dynamic cell assays,” Lab Chip, vol. 12, no. 2, pp. 309-16, Jan 21.
[84] J. Pihl, J. Sinclair, E. Sahlin et al., “Microfluidic gradient-generating device for pharmacological profiling,” Analytical Chemistry, vol. 77, no. 13, pp. 3897-3903, Jul 1, 2005.
[85] J. Y. Park, S. K. Kim, D. H. Woo et al., “Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient,” Stem Cells, vol. 27, no. 11, pp. 2646-54, Nov, 2009.
[86] L. J. Millet, M. E. Stewart, R. G. Nuzzo et al., “Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices,” Lab Chip, vol. 10, no. 12, pp. 1525-35, Jun 21.
[87] J. Atencia, J. Morrow, and L. E. Locascio, “The microfluidic palette: a diffusive gradient generator with spatio-temporal control,” Lab Chip, vol. 9, no. 18, pp. 2707-14, Sep 21, 2009.
[88] Y. C. Toh, K. Blagovic, and J. Voldman, “Advancing stem cell research with microtechnologies: opportunities and challenges,” Integr Biol (Camb), vol. 2, no. 7-8, pp. 305-25, Aug.
[89] S. N. Bhatia, U. J. Balis, M. L. Yarmush et al., “Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells,” FASEB J, vol. 13, no. 14, pp. 1883-900, Nov, 1999.
[90] A. Carraro, W. M. Hsu, K. M. Kulig et al., “In vitro analysis of a hepatic device with intrinsic microvascular-based channels,” Biomed Microdevices, vol. 10, no. 6, pp. 795-805, Dec, 2008.
[91] E. Leclerc, K. El Kirat, and L. Griscom, “In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips,” Biomed Microdevices, vol. 10, no. 2, pp. 169-77, Apr, 2008.
[92] Y. Tanaka, M. Yamato, T. Okano et al., “Evaluation of effects of shear stress on hepatocytes by a microchip-based system,” Measurement Science & Technology, vol. 17, no. 12, pp. 3167-3170, Dec, 2006.
[93] http://www.pic2fly.com/Hepatic-Lobule.html
[94] http://www.composmentis.info/2012/06/nimhans-old-questions-anatomy-01.html
[95] http://www.flickr.com/photos/mitopencourseware/3693630203/
[96] http://crescentok.com/staff/jaskew/isr/anatomy/anatomy1/anatomy/digest/
digest17.htm
[97] http://www.ouhsc.edu/histology/Glass%20slides/88_03.jpg