研究生: |
林鼎均 Lin, Ding-Jun |
---|---|
論文名稱: |
在交通路口上的行人和車子之間的碰撞預測系統 A Collision Prediction System of Person-Vehicle at Intersection |
指導教授: |
許文星
Hsu, Wen-Hsing |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 交通意外 、十字路口 、智慧型交通系統 |
外文關鍵詞: | Traffic accident, Intersection, Intelligent Transportation System |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
智慧型交通系統(ITS) 是近幾年來相當熱門的研究方向。主要是自動監控十字路口的交通情況, 這樣的系統可以降低人力的需求, 還可以自動預測可能發生車禍的情行, 並警告駕駛人或者行人, 使道路使用者對於危險的狀況提早做出反應,讓發生的車禍案件次數下降, 保障行人及駕駛者生命安全, 並保持道路的順暢, 降低國家不必要的社會成本付出。
在我們的系統中, 我們首先利用前景和背景分離的方法, 以背景相減法, 萃取出我們所需要的移動物體資訊, 並過濾掉雜訊, 得到乾淨的分離移動物體圖。接著利用類似平面的場景, 給每一個移動物體一個編號, 而每一個編號都有所屬移動物體的特徵, 比如說: 位置、面積和速度...... 等等。接著追蹤移動物體在十字路口的行進軌跡, 並在追蹤的過程中,利用最小平方解的方法, 求出二次曲線或者一次曲線的模擬路線圖, 利用未來的軌跡路線,去觀察車子和行人之間的關係, 判斷是否可能發生車禍。在追蹤的過程中, 並分類移動物體是車子、摩托車或者是行人, 利用我們預測到的軌跡, 可以對十字路口的交通情況作一種程度上的了解, 比如說: 有車子正在轉彎或者是有行人正在通過斑馬線、往左行或者往右行的車子和摩拖車有多少...... 等等。
Among the most impotant research in Intelligent Transportation Systems (ITS) is the development of systems that automatically monitor traffic flow at intersections.
Such systems would be useful both in reducing the workload of human operators and in warning driver and pedestrian of dangerous situations. The might be able to reduce the number of accidents and protect safe of driver and pedestrian.
In our system, we employ algorithm of moving objects segmentation to extract moving objects information that give a new object ID to those object piexls. Each
ID have own features, such as position, area and motion vector. Then we track each ID and employ least-square solution and linear or quadratics equation to request
future trajectory. We can distinguish that moving objects are car or motorcycle or pedestrian and understand situations of traffic. When a car to make a turn and pedestrian to pass through intersection can predict whether they might lead to accident.
[1] http://en.wikipedia.org/wiki/Traffic.
[2] 蔡佳璋, 《都會交通事故與用路人關係之研究-以台南市為例》, 國家圖書館.
[3] J. Barron, D. Fleet and S. Beauchemin, ”Determining optical flow”, Artificial Intelligence, vol.17, pp.185-203, 1981.
[4] A.M. Tekalp, ”Digital video processing”, Prentice Hall PTR,1995.
[5] A.J. Lipton, H. Fujiyoshi and R.S. Patil, ”Moving target classification and tracking from real-time video”, in Proc. of the IEEE Workshop on Applications of Computer Vision, pp.8-14, Oct.1998.
[6] C. Kim and J.N. Hwang, ”A fast and robust moving object segmentation in video sequences”, in Proc. of the IEEE International Conference on Image Processing, vol.2, Kobe, Japan pp.131-134, Oct.1999.
[7] C. Kim and J.N. Hwang, ”Fast and automatic video object segmentation and tracking for content-based applications”, IEEE Transactions Circuits and Systems
for video Technology, vol.12, pp.122-129, Feb.2002.
[8] S. Gupte, O. Masoud, R.F.K. Martin and N.P. Papanikolopoulos, ”Detection and classification of vehicles”, IEEE Transactions on Intelligent Transportation
Systems, vol.3, no.1, pp.37-47, Mar.2002.
[9] N.Peterfreund, ”Robust Tracking of Position and Velocity With Kalman Snakes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, no.6,
pp.564-569, Jun.1999.
[10] D. Koller, J.Webber, T. Huang, J. Malik, G. Ogasawara, B. Rao and S. Russel, ”Towards robust automatic traffic scene analysis in real-time”, in Proc. of the 12th LAPR International Conference on Pattern Recognition, vol.1, pp.126-131, 1994.
[11] A. Chachich, A. Pau, A. Barber, K. Kennedy, E. Olejniczak, J. Hackney, Q. Sum and E. Mireles, ”Traffic sensor using a color vision method”, in Proc. of SPIE: Transportatiom Sensor and Controls: Collision Avoidance, Traffic Management, and ITS, vol.2902, pp.156-165, 1996.
[12] I.A. Karaulova, P.M. Hall and A.D. Marshall, ”A hierarchical model of dynamics for tracking people with a single video camera”, in Proc. of British Machine Vision Conference, pp.262-352, 2000.
[13] Steven J. Leon, ”Linear Algebra with Applications, Sixth Edition”, Prentice-Hall Inc, 2002.
[14] M.Thaban Nair, ”Least-Square Solution of Matrix Equations”.
[15] http://www.wretch.cc/blog/glCheng/3650983.
[16] G. Rafae and E. Richard, ”Digital Image Processing, 2 ed”, Prentice-Hall, 2002.
[17] H. Ikeda, Y. Kaneko, T. Matsuo and K. Tsuji, ”Abnormal Incident Detection System Employing Image Processing Technology”, in Proc. of the IEEE International Conference on Intelligent Transportation Systems, pp.748-752, Oct.1999.
[18] Eric R. Green, Kenneth R. Agent and Jerry G. Pigman, ”Evaluation of Auto Incident Recording System”, Kentucky Transportation Center, 2005.
[19] P. Sangho and M. Trivedi Mohan, ”Analysis and Query of Person-vehicle Interactions in Homography Domain”, International Multimedia Conference on Proceedings of the 4th ACM, pp.101-110, 2006.
[20] Yong-Kul Ki and Dong-Young Lee, ”A Traffic Accident Recording and Reporting Model at Intersections”, IEEE Transactions on Intelligent Transportation Systems, vol.8, pp.188-194, June.2007.
[21] Li Juntao, Liu Bingwu and Huo Lingyu, ”Multiple Objects Segmentation and Tracking Algorithm for Intersection Monitoring”, IEEE Conference on Industrial
Electronics and Applications, pp.1413-1416, June.2008.