簡易檢索 / 詳目顯示

研究生: 林士鳴
Lin, Shih-Ming
論文名稱: 嵌膜型質子傳送焦磷酸水解酶之晶體結構
Crystal Structure of a Membrane-embedded H+-translocating Pyrophosphatase
指導教授: 潘榮隆
Pan, Rong-Long
口試委員: 孫玉珠
Sun, Yuh-Ju
張晃猷
Chang, Hwan-You
張文綺
Chang, Wen-Chi
蕭傳鐙
Hsiao, Chwan-Deng
潘榮隆
Pan, Rong-Long
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 43
中文關鍵詞: 膜蛋白質子傳輸焦磷酸水解酶X光蛋白質晶體學液泡
外文關鍵詞: Membrane protein, Proton transport, Pyrophosphatase, X-ray protein crystallography, Vacuole
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 質子傳送焦磷酸水解酶可藉由水解焦磷酸建立跨生物膜的質子梯度,為一種主動傳輸型質子傳送蛋白。此酵素主要以雙次體的形式存在於植物液泡膜與一些原核生物的細胞膜中。此酵素之三維結構仍尚未解構,其酵素反應與質子傳送機制也尚待釐清。此研究描述綠豆質子傳送焦磷酸水解酶之晶體結構,此結構為酵素與亞氨二磷酸鹽(imidodiphosphate)之結合狀態,其解析度為2.35埃。每個綠豆質子傳送焦磷酸水解酶次體由十六根穿膜螺旋形成一個穿膜區間。每個次體利用數個帶電胺基酸與五個鎂離子一將個亞氨二磷酸鹽分子牢牢固定在其細胞質側。我們發現一個嶄新的質子傳送途徑由六根核心穿膜螺旋中心組成。質子傳送可藉由水解焦磷酸而啟動,進而經由一條由Arg242, Asp294, Lys742 和Glu301所組成的途徑傳送到液泡膜內腔。本論文總結提出一個運作模型用以解釋此酵素之焦磷酸水解與質子傳送知耦合關聯機制。


    H+-translocating pyrophosphatases (H+-PPases) are active proton transporters that establish a proton gradient across the endomembrane by means of pyrophosphate (PPi) hydrolysis. H+-PPases are found primarily as homodimers in the vacuolar membrane of plants and the plasma membrane of several protozoa and prokaryotes. The three-dimensional structure and detailed mechanisms underlying the enzymatic and proton translocation reactions of H+-PPases are unclear. Here we report the crystal structure of a Vigna radiata H+-PPase (VrH+-PPase) in complex with a non-hydrolysable substrate analogue, imidodiphosphate (IDP), at 2.35 Å resolution. Each VrH+-PPase subunit consists of an integral membrane domain formed by 16 transmembrane helices. IDP is bound in the cytosolic region of each subunit and trapped by numerous charged residues and five Mg2+ ions. A previously undescribed proton translocation pathway is formed by six core transmembrane helices. Proton pumping can be initialized by PPi hydrolysis, and H+ is then transported into the vacuolar lumen through a pathway consisting of Arg 242, Asp 294, Lys 742 and Glu 301. We propose a working model of the mechanism for the coupling between proton pumping and PPi hydrolysis by H+-PPases.

    Contents Introduction 1 Materials and Methods 5 Cloning, expression and purification 5 PPi hydrolysis activity assay 6 Crystallization and X-ray data collection 6 Structural determination and refinement 7 Results and Discussion 8 The overall structure of VrH+-PPase 8 The substrate/IDP binding pocket 9 The proton translocation pathway 11 A proposed enzymatic mechanism model 12 Future prospects 14 References 16 Tables 23 Table 1, Data collection, phasing and refinement statistics 24 Table 2, Detailed interactions of dimer interface 26 Table 3, The binding interaction of IDP and Mg2+ ions 29 Table 4, The salt bridge network near the active site 30 Table 5, PPi hydrolysis and proton pumping activities of variants with mutation at residues along proton translocation pathway 31 Figures 32 Figure 1, Multiple sequence alignment of H+-PPase 33 Figure 2, The crystal structure of the VrH+-PPase-IDP complex 36 Figure 3, Structural topology of the VrH+-PPase 37 Figure 4, Dimer interface of the VrH+-PPases 38 Figure 5, The substrate binding site 40 Figure 6, The salt bridge network near the active site 41 Figure 7, The proton transport pathway of VrH+-PPase 42 Figure 8, A working model for proton pumping in VrH+-PPase 43

    References
    Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948-1954.
    Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., McCoy, A.J., Moriarty, N.W., Oeffner, R., Read, R.J., Richardson, D.C., Richardson, J.S., Terwilliger, T.C., and Zwart, P.H. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221.
    Baltscheffsky, H., Von Stedingk, L.V., Heldt, H.W., and Klingenberg, M. (1966). Inorganic pyrophosphate: formation in bacterial photophosphorylation. Science 153, 1120-1122.
    Belogurov, G.A., and Lahti, R. (2002). A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J. Biol. Chem. 277, 49651-49654.
    Britten, C. J., Turner, J. C., and Rea, P. A. (1989). Identification and purification of substrate binding subunit of higher plant H+-translocating inorganic pyrophosphatase. FEBS Lett. 256, 200-206.
    Buch-Pedersen, M. J., Pedersen, B. P., Veierskov, B., Nissen, P., and Palmgren, M. G. (2009). Protons and how they are transported by proton pumps. Pflugers Arch. 457, 573-579.
    Chanson, A., Fichmann, J., Spear, D., and Taiz, L. (1985). Pyrophosphate-driven proton transport by microsomal membranes of corn coleoptiles. Plant Physiol. 79, 159-164.
    DeLano, W. L. (2002). The PyMOL Molecular Graphics System (DeLano Scientific).
    Drozdowicz, Y.M., and Rea, P.A. (2001). Vacuolar H+-pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci. 6, 206-211.
    Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010). Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 66, 486-501.
    Fabrichniy, I. P., Lehtiö, L., Tammenkoski, M., Zyryanov, A.B., Oksanen, E., Baykov, A.A., Lahti, R., and Goldman, A. (2007). A trimetal site and substrate distortion in a family II inorganic pyrophosphatase. J. Biol. Chem. 282, 1422-1431.
    Ferjani, A., Segami, S., Horiguchi, G., Muto, Y., Maeshima, M., and Tsukaya, H. (2011). Keep an eye on PPi: the vacuolar-type H+-pyrophosphatase regulates postgerminative development in Arabidopsis. Plant Cell 23, 2895-2908.
    Gordon-Weeks, R., Steele, S.H., and Leigh, R.A. (1996). The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase (studies using ligand protection from covalent inhibitors). Plant Physiol. 111, 195-202.
    Gouet, P., Courcelle, E., Stuart, D. I., and Metoz, F. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308.
    Guo, S., Yin, H., Zhang, X., Zhao, F., Li, P., Chen, S., Zhao, Y., and Zhang, H. (2006). Molecular cloning and characterization of a vacuolar H+ -pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol. Biol. 60, 41-50.
    Hirono, M., Mimura, H., Nakanishi, Y., and Maeshima, M. (2005). Expression of functional Streptomyces coelicolor H+-pyrophosphatase and characterization of its molecular properties. J. Biochem. 138, 183-191.
    Hirono, M., Nakanishi, Y., and Maeshima, M. (2007). Essential amino acid residues in the central transmembrane domains and loops for energy coupling of Streptomyces coelicolor A3(2) H+-pyrophosphatase. Biochim. Biophys. Acta. 1767, 930-939.
    Ho, B. K., and Gruswitz, F. (2008). HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49.
    Hsu, S. H., Hsiao, Y. Y., Liu, P. F., Lin, S. M., Luo, Y. Y., and Pan, R. L. (2009) Purification, characterization, and spectral analyses of histidine-tagged vacuolar H+-pyrophosphatase expressed in yeast. Bot. Stud. (Taipei, Taiwan) 50, 291-301.
    Huang, Y.T., Liu, T.H., Chen, Y.W., Lee, C.H., Chen, H.H., Huang, T.W., Hsu, S.H., Lin, S.M., Pan, Y.J., Lee, C.H., Hsu, I.C., Tseng, F.G., Fu, C.C., and Pan, R.L. (2010). Distance variations between active sites of H+-pyrophosphatase determined by fluorescence resonance energy transfer. J. Biol. Chem. 285, 23655-23664.
    Kellosalo, J., Kajander, T., Kogan, K., Pokharel, K., and Goldman, A. (2012). The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 337, 473-476.
    Kim, E. J., Zhen, R. G., and Rea, P. A. (1994). Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport. Proc. Natl. Acad. Sci. U.S.A. 91, 6128-6132.
    Kirsch, R.D., and Joly, E. (1998). An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res. 26(7), 1848-1850.
    Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. (1993). M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291.
    Lee, C.H., Pan, Y.J., Huang, Y.T., Liu, T.H., Hsu, S.H., Lee, C.H., Chen, Y.W., Lin, S.M., Huang, L.K., and Pan, R.L. (2011). Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase. J. Biol. Chem. 286, 11970-11976.
    Li, J., Yang, H., Peer, W.A., Richter, G., Blakeslee, J., Bandyopadhyay, A., Titapiwantakun, B., Undurraga, S., Khodakovskaya, M., Richards, E.L., Krizek, B., Murphy, A.S., Gilroy, S., and Gaxiola, R.. (2005). Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310, 121-125.
    Luecke, H., Richter, H. T., and Lanyi, J. K. (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280, 1934-1937.
    Maeshima, M., and Yoshida, S. (1989). Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J. Biol. Chem. 264, 20068-20073.
    Maeshima, M. (1990). Oligomeric structure of H+-translocating inorganic pyrophosphatase of plant vacuoles. Biochem. Biophys. Res. Commun. 168, 1157-1162.
    Maeshima, M. (1991). H+-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur. J. Biochem. 196, 11-17.
    Maeshima, M. (2000). Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1465, 37-51.
    Maeshima, M. (2001). Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 469-497.
    Marty, F. (1999). Plant vacuoles. Plant Cell 11, 587-600.
    McIntosh, M.T., Drozdowicz, Y.M., Laroiya, K., Rea, P.A., and Vaidya, A.B. (2001). Two classes of plant-like vacuolar-type H+-pyrophosphatases in malaria parasites. Mol. Biochem. Parasitol. 114, 183-195.
    McPherson, A. (1990). Current approaches to macromolecular crystallization. Eur. J. Biochem. 189, 1-23.
    Mimura, H., Nakanishi, Y., Hirono, M., and Maeshima, M. (2004). Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J. Biol. Chem. 279, 35106-35112.
    Nakanishi, Y., Saijo, T., Wada, Y., and Maeshima, M. (2001). Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J. Biol. Chem. 276, 7654-7660.
    Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.
    Pan, Y.J., Lee, C.H., Hsu, S.H., Huang, Y.T., Lee, C.H., Liu, T.H., Chen, Y.W., Lin, S.M., and Pan, R.L. (2011). The transmembrane domain 6 of vacuolar H+-pyrophosphatase mediates protein targeting and proton transport. Biochim. Biophys. Acta 1807, 59-67.
    Park, S., Li, J., Pittman, J.K., Berkowitz, G.A., Yang, H., Undurraga, S., Morris, J., Hirschi, K.D., and Gaxiola, R.A. (2005). Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc. Natl. Acad. Sci. U.S.A. 102, 18830-18835.
    Pedersen, B. P., Buch-Pedersen, M. J., Morth, J. P., Palmgren, M. G., and Nissen, P. (2007). Crystal structure of the plasma membrane proton pump. Nature 450, 1111-1114.
    Pick, U., Zeelon, O., and Weiss, M. (1991). Amine accumulation in acidic vacuoles protects the halotolerant alga Dunaliella salina against alkaline stress. Plant Physiol. 97, 1226-1233.
    Potterton, E., Briggs, P., Turkenburg, M., and Dodson, E. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760-763.
    Rea, P. A., and Poole, R. J. (1985). Proton-translocating inorganic pyrophosphatase in red beet (Beta vulgaris L.) tonoplast vesicles. Plant Physiol. 77, 46-52
    Rea, P.A., Kim, Y., Sarafian, V., Poole, R.J., Davies, J.M., and Sanders, D. (1992). Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem. Sci. 17, 348-353.
    Rea PA, Britten CJ, Jennings IR, Calvert CM, Skiera LA, Leigh RA, Sanders D. (1992). Regulation of vacuolar H+-pyrophosphatase by free calcium: a reaction kinetic analysis. Plant Physiol. 100(4), 1706-1715.
    Rea, P. A., and Poole, R. J. (1993). Vacuolar H+-translocating pyrophosphatase. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 157-180.
    Samygina, V.R., Moiseev, V.M., Rodina, E.V., Vorobyeva, N.N., Popov, A.N., Kurilova, S.A., Nazarova, T.I., Avaeva, S.M., and Bartunik, H.D. (2007). Reversible inhibition of Escherichia coli inorganic pyrophosphatase by fluoride: trapped catalytic intermediates in cryo-crystallographic studies. J. Mol. Biol. 366, 1305-1317
    Sarafian, V., and Poole, R.J. (1989). Purification of an H+-translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol. 91, 34-38.
    Sarafian, V., Kim, Y., Poole, R. J., and Rea, P. A. (1992). Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 89, 1775-1779.
    Schultz, A., and Baltscheffsky, M. (2003). Properties of mutated Rhodospirillum rubrum H+-pyrophosphatase expressed in Escherichia coli. Biochim. Biophys. Acta 1607, 141-151.
    Schumacher, K. (2006). Endomembrane proton pumps: connecting membrane and vesicle transport. Curr. Opin. Plant Biol. 9, 595-600.
    Szponarski, W., Sommerer, N., Boyer, J.C., Rossignol, M., and Gibart, R. (2004). Large-scale characterization of integral proteins from Arabidopsis vacuolar membrane by two-dimensional liquid chromatography. Proteomics 4, 397-406.
    Takasu, A., Nakanishi, Y., Yamauchi, T., and Maeshima, M. (1997). Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies. J. Biochem. 122, 883-889.
    Terwilliger, T. C., and Berendzen, J. (1999). Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849-861.
    Tzeng, C.M., Yang, C.Y., Yang, S.J., Jiang, S.S., Kuo, S.Y., Hung, S.H., Ma, J.T., and Pan, R.L. (1996). Subunit structure of vacuolar proton-pyrophosphatase as determined by radiation inactivation. Biochem. J. 316(Pt 1), 143-147.
    Vagin, A.A., Steiner, R.A., Lebedev, A.A., Potterton, L., McNicholas, S., Long, F., and Murshudov, G.N. (2004). REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184-2195.
    Van, R.C., Pan, Y.J., Hsu, S.H., Huang, Y.T., Hsiao, Y.Y., and Pan, R.L. (2005). Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta. 1709, 84-94.
    Vonrhein, C., Blanc, E., Roversi, P., and Bricogne, G. (2007). Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215-230.
    Zancani, M., Skiera, L. A., and Sanders, D. (2007). Roles of basic residues and salt-bridge interaction in a vacuolar H+-pumping pyrophosphatase (AVP1) from Arabidopsis thaliana. Biochim. Biophys. Acta 1768, 311-316.
    Zhen, R. G., Kim, E. J., and Rea, P. A. (1997). Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide. J. Biol. Chem. 272, 22340-22348.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE