簡易檢索 / 詳目顯示

研究生: 陳品蓉
Chen, Pin-Jung
論文名稱: 碲化銅奈米片之新穎合成方法以及在高倍率鈉離子電池負極之應用
A Novel Synthesis of Standing Copper Telluride Nanoplates for Binder-free High-Rate Sodium-ion Battery Anodes
指導教授: 闕郁倫
Chueh, Yu-Lun
口試委員: 劉全璞
Liu, Chuan-Pu
張仍奎
Chang, Jeng-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 44
中文關鍵詞: 碲化銅奈米片鈉離子電池高倍率
外文關鍵詞: Copper Telluride Nanoplates, Sodium-ion Battery, High-Rate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於鋰離子電池的價格不斷上升,科學家們正在尋找能夠替代的電池系統。而鈉離子電池因為具有和鋰離子電池相似的化學性質、地表含量豐富以及價格便宜等優勢,是目前備受關注的研究方向。
    其中,有研究顯示碲化銅可以做為鋰離子電池以及鈉離子電池的負極材料。不過,這些研究中大多結合了碳材料,一方面是為了提升導電度,另一方面也做為體積膨脹的緩衝材料。然而,加入導電碳材料以及黏著劑之後將會降低活性材料的利用率。
    本研究利用ITO作為擴散屏障層,以化學氣相沉積的方式在銅箔上合成碲化銅奈米片。和以往的研究不同,這些試片可以直接做為電極使用,不需額外添加黏著劑或集電極等製程。藉由鈕扣電池的量測,此鈉離子電池在電流密度200 mA g−1之下可達到224 mAh g−1的可逆電容。此外,它也具有優異的快充表現(在電流密度20 A g−1之下具有179 mAh g−1的電容值),在2 A/g的電流密度之下也有穩定的循環壽命(600個循環次數之後的電容僅下降10 %)。這些優異的電化學特性可歸因於碲化銅本身的高導電度和材料密度、碲化銅奈米片與銅箔之間的良好接觸、以及對電解液的優化選擇。


    Recently, due the rising cost of lithium-ion batteries (LIBs), scientists have been searching for an alternative battery system. Sodium-ion batteries (SIBs) have attracted considerable attention due to their similar chemistry with LIBs, as well as their abundance on earth and the lower cost comparing to lithium-ion batteries. Previous studies have demonstrated the potential of copper telluride as the anode material for both lithium- and sodium-ion batteries by combining it with a carbonaceous material. Although the carbonaceous material could help confine the tellurium nanostructures as well as buffer the volume expansion during cycling, this method usually requires binders and conductive additives, which would limit the full utilization of the active material.
    In this study, standing copper telluride nanoplates were directly grown on copper foil through a chemical vapor deposition process with a layer of ITO as the diffusion barrier. In contrast to previous reports, this as-synthesized product could be directly utilized as the electrode without further modification or treatment. A binder- and collector-free sodium-ion battery was then assembled, and it delivered a high reversible capacity of 224 mAh g-1 at the current density of 200 mA g−1. Furthermore, it also showed fast rate capability (179 mAh g-1 at the current density of 20 A g−1). A cycling stability test at the current density of 2 A/g revealed a capacity retention of ~90 % even after 600 cycles. These remarkable electrochemical performances could be attributed to the superior electronic conductivity and materials density of copper telluride, the good contact between the copper telluride nanoplates and the copper foil, and the optimization of the electrolyte.

    Content I Tables V Abstract VI 摘要 VIII Chapter 1 Introduction 1 1.1 Sodium ion battery 1 1.1.1 Background 1 1.1.2 Sodium storage mechanism 2 1.1.3 Developments of anode materials for sodium-ion batteries 4 1.2 Copper chalcogenides 6 1.2.1 Introduction 6 1.2.2 Typical synthetic routes 6 1.2.3 Copper tellurides in lithium and sodium-ion battery 8 Chapter 2 Motivation 9 Chapter 3 Experimental Methods 11 3.1 Electron-beam physical vapor deposition (EBPVD) 11 3.2 Vertical tellurization furnace 12 3.3 Coin cell assembly 14 3.4 Raman spectroscopy 15 3.5 X-ray photoelectron spectroscopy (XPS) 16 3.6 X-ray diffractometer (XRD) 16 3.7 Scanning electron spectroscopy (Hitachi 8010) 17 Chapter 4 Results and Discussion 18 4.1 Materials synthesis 18 4.1.1 Materials characterization 18 4.1.2 Parameters tuning 20 4.1.2.1 Time evolution 21 4.1.2.2 Growth mechanism 22 4.1.2.3 Substrate temperature and gas ratio effect 24 4.1.2.4 The role of ITO layer 25 4.1.2.5 Substrate effect 27 4.2 Electrochemical performance 28 4.2.1 Electrolyte optimization 28 4.2.2 Rate capability 31 4.2.3 Comparison with literature works 34 4.2.4 CV at different scan rates 36 4.3 Ex situ analysis 37 4.3.1 Experimental setup 37 4.3.2 ex situ XRD 37 4.3.3 ex situ XPS 38 4.3.4 Reaction mechanism 39 Chapter 5 Conclusion and Future Aspects 40 Chapter 6 Reference 42

    1. Yabuuchi, N., et al., Research Development on Sodium-Ion Batteries. Chemical Reviews, 2014. 114(23): p. 11636-11682.
    2. Stevens, D. and J. Dahn, The mechanisms of lithium and sodium insertion in carbon materials. Journal of The Electrochemical Society, 2001. 148(8): p. A803-A811.
    3. Liu, S., et al., Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. Journal of Power Sources, 2016. 304: p. 346-353.
    4. Jiang, Y., et al., ITO@Cu2S Tunnel Junction Nanowire Arrays as Efficient Counter Electrode for Quantum-Dot-Sensitized Solar Cells. Nano Letters, 2014. 14(1): p. 365-372.
    5. Liu, H., et al., Copper ion liquid-like thermoelectrics. Nature Materials, 2012. 11: p. 422.
    6. Arciniegas, M.P., et al., Self-Assembled Dense Colloidal Cu2Te Nanodisk Networks in P3HT Thin Films with Enhanced Photocurrent. Advanced Functional Materials, 2016. 26(25): p. 4535-4542.
    7. Han, C., et al., Controlled synthesis of copper telluride nanostructures for long-cycling anodes in lithium ion batteries. Journal of Materials Chemistry A, 2014. 2(30): p. 11683-11690.
    8. Yu, H., et al., Facile preparation of carbon wrapped copper telluride nanowires as high performance anodes for sodium and lithium ion batteries. Nanotechnology, 2017. 28(14): p. 145403.
    9. Sarkar, A., et al., Free standing Cu2Te, new anode material for sodium-ion battery. AIP Conference Proceedings, 2018. 1961(1): p. 030032.
    10. Salmón-Gamboa, J.U., et al., Vibrational and electrical properties of Cu2−xTe films: experimental data and first principle calculations. Scientific Reports, 2018. 8(1): p. 8093.
    11. Taniguchi, M., et al., A photoemission and inverse-photoemission study of trigonal Te. Journal of Physics: Condensed Matter, 1994. 6(27): p. 5181-5188.
    12. Park, D., et al., Fabrication of one-dimensional Cu2Te/Te nanorod composites and their enhanced thermoelectric properties. CrystEngComm, 2019. 21(10): p. 1555-1563.
    13. Braud, F., et al., Ultra thin diffusion barriers for Cu interconnections at the gigabit generation and beyond. Microelectronic Engineering, 1997. 33(1): p. 293-300.
    14. Zhang, K., et al., FeSe2 Microspheres as a High-Performance Anode Material for Na-Ion Batteries. Advanced Materials, 2015. 27(21): p. 3305-3309.
    15. Zhang, J., et al., Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy & Environmental Science, 2017. 10(1): p. 370-376.
    16. Zhang, J., Y.-X. Yin, and Y.-G. Guo, High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. ACS Applied Materials & Interfaces, 2015. 7(50): p. 27838-27844.
    17. Liu, Y., et al., Lithium–tellurium batteries based on tellurium/porous carbon composite. Journal of Materials Chemistry A, 2014. 2(31): p. 12201-12207.
    18. Ding, N., et al., Tellurium@Ordered Macroporous Carbon Composite and Free-Standing Tellurium Nanowire Mat as Cathode Materials for Rechargeable Lithium–Tellurium Batteries. Advanced Energy Materials, 2015. 5(8): p. 1401999.
    19. Seo, J.-U., G.-K. Seong, and C.-M. Park, Te/C nanocomposites for Li-Te Secondary Batteries. Scientific Reports, 2015. 5: p. 7969.
    20. Xu, J., et al., Elastic Carbon Nanotube Aerogel Meets Tellurium Nanowires: A Binder- and Collector-Free Electrode for Li-Te Batteries. Advanced Functional Materials, 2016. 26(21): p. 3580-3588.
    21. He, J., et al., Three-Dimensional Hierarchical Reduced Graphene Oxide/Tellurium Nanowires: A High-Performance Freestanding Cathode for Li–Te Batteries. ACS Nano, 2016. 10(9): p. 8837-8842.
    22. Huang, D., et al., Ultrafast synthesis of Te nanorods as cathode materials for lithium-tellurium batteries. Journal of Power Sources, 2017. 371: p. 48-54.
    23. He, J., et al., Tellurium-Impregnated Porous Cobalt-Doped Carbon Polyhedra as Superior Cathodes for Lithium–Tellurium Batteries. ACS Nano, 2017. 11(8): p. 8144-8152.
    24. Li, Y., et al., Muscle-like electrode design for Li-Te batteries. Energy Storage Materials, 2018. 10: p. 10-15.
    25. Xie, X., et al., MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries. Advanced Energy Materials, 2016. 6(5): p. 1502161.
    26. Xie, X., et al., MoS2/Graphene Composite Anodes with Enhanced Performance for Sodium-Ion Batteries: The Role of the Two-Dimensional Heterointerface. Advanced Functional Materials, 2015. 25(9): p. 1393-1403.
    27. Wang, Y., et al., Ice Templated Free-Standing Hierarchically WS2/CNT-rGO Aerogel for High-Performance Rechargeable Lithium and Sodium Ion Batteries. Advanced Energy Materials, 2016. 6(21): p. 1601057.
    28. Liu, Y., et al., Nitrogen-Doped Carbon Coated WS2 Nanosheets as Anode for High-Performance Sodium-Ion Batteries. Frontiers in Chemistry, 2018. 6(236).
    29. Zhang, Z., X. Yang, and Y. Fu, Nanostructured WSe2/C composites as anode materials for sodium-ion batteries. RSC Advances, 2016. 6(16): p. 12726-12729.
    30. Chen, Y., et al., High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy, 2018. 46: p. 117-127.
    31. Sun, J., et al., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotechnology, 2015. 10: p. 980.

    QR CODE