研究生: |
蘇佩慈 Su, Pei-Tsu |
---|---|
論文名稱: |
凝血酶敏感蛋白區域包含蛋白7A經由αvβ3整合素-樁蛋白相關之訊號傳遞路徑調控血管內皮層細胞之移動 Thrombospondin Type I Domain Containing 7A Modulates Cell Motility in Endothelial Cell through αvβ3 Integrin-Paxillin Related Signaling Pathway |
指導教授: |
莊永仁
Chuang, Yung-Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 凝血酶敏感蛋白區域包含蛋白7A 、樁蛋白 、avb3整合素 、細胞移動 、血管內皮層細胞 |
外文關鍵詞: | THSD7A, paxillin, alphavbeta3 integrin, cell migration, endothelial cell |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝血酶敏感蛋白區域包含蛋白7A (THSD7A)是個新穎的蛋白質,會在血管新生的過程中調控血管內皮層細胞的移動。生物資訊的分析結果預測THSD7A是一個膜蛋白,包含了十一個凝血酶敏感蛋白重複區域(thrombospondin-type-I repeats, TSR),一個CD36結合區域,以及一個RGD序列。這些特徵暗示THSD7A可能參與了細胞移動和細胞與胞外基質的交互作用。我們先前的研究顯示,THSD7A會調控人類臍帶靜脈內皮層細胞(HUVEC)的移動,以及斑馬魚發育時期體節間血管的新生。然而,對於THSD7A引導血管生成的下游調控機制仍尚未釐清。由於THSD7A被預測為一個膜蛋白,首先我們希望利用細胞免疫螢光染色技術來探討THSD7A在HUVEC中的表現位置。我們發現THSD7A表現在細胞核周圍,意味著THSD7A在內質網和高基氏體被重新合成以及運送。除此之外,THSD7A也會與avb3整合素(integrin)以及樁蛋白(paxillin)一起聚集在位於絲狀肌動蛋白束末端(actin filament)的集中附著點(focal adhesion sites)上。綜合上述,這些發現暗示著THSD7A可能是一個藉由內質網和高基氏體運輸到細胞膜的集中附著點蛋白。THSD7A有一段RGD氨基酸序列,這種序列被廣為知道能與integrin結合並幫助其活化。在integrin活化後,一個被稱為paxillin的集中附著點相關輔助蛋白,已知在細胞移動的機制中扮演關鍵性的角色。因此我們假設THSD7A可能經由integrin-paxillin的路徑來調控細胞的移動。我們發現在細胞產生方向性移動的狀態下,THSD7A會聚集在細胞的前端,這與paxillin在細胞移動時的分佈情形相同。我們接著利用免疫共沈澱法證明THSD7A會與paxillin結合。除此之外,抑制THSD7A在HUVEC中的表現時,會導致HUVEC產生較寬的層狀偽足(lamellipodia)以及actin聚集的現象,這個發現類似於其他研究指出的有功能性缺陷的paxillin在細胞中所造成的影響。這些結果顯示THSD7A可能是一個新的paxillin結合蛋白,並且可能藉由integrin-paxillin所調控的細胞骨架重組機制來影響細胞的移動。綜合以上所述,我們的研究結果顯示THSD7A對於血管內皮層細胞除了細胞移動外尚有更廣效性的影響。對於THSD7A更進一步的研究將會對於內皮細胞生理上的機制以及病理上的生長失序有更多的瞭解。
Thrombospondin Type I Domain Containing 7A (THSD7A) is a novel protein that mediates endothelial cell migration in angiogenesis. Bioinformatic analysis predicted THSD7A to be a membrane protein containing eleven thrombospondin-type-I repeats (TSR), one CD36-binding domain, and one RGD motif. These features imply THSD7A may be involved in cell migration and cell-to-ECM interaction. From previous studies, we have learned THSD7A regulates human umbilical vein endothelial cells (HUVECs) migration in vitro and affects zebrafish intersegmental vessels (ISV) angiogenesis during its development in vivo. However, the underlying mechanism by which THSD7A affects vessel guidance and patterning remains unclear. Since THSD7A was predicted to be a membrane protein, we first performed immunocytochemistry analysis to examine the subcellular localization of endogenous THSD7A in HUVEC. We found that THSD7A could be detected at peripheral nucleus area, which suggests its de novo synthesis and processing in the endoplasmic reticulum (ER) and Golgi apparatus. In addition, THSD7A could also be found at focal adhesion sites that co-localized with avb3 integrin and paxillin at the extremities of actin cytoskeleton in HUVECs. Taken together, these findings implied THSD7A may be a focal adhesion protein that was transported to membrane through ER-Golgi. THSD7A has a RGD motif, which is well known to interact with integrins and to activate them. Upon integrin activation, a focal adhesion-associated adaptor protein called paxillin is known to play as a key role in regulating cell motility. Therefore, we hypothesized that THSD7A may also regulate cell motility through the integrin-paxillin pathway. We found that THSD7A can be observed at the leading front of directed migrating cells, and THSD7A was similarly distributed as paxillin in migrating cells. We then verified the physical interaction of THSD7A and paxillin by co-immunoprecipitation assay. Furthermore, THSD7A knockdown in HUVECs induced the formation of broad lamellipodia-like structures and actin condensation, which are similar to paxillin-deficient cells observed in other studies. Altogether, these findings suggested THSD7A is a new binding partner of paxillin and it may mediate cell migration through integrin-paxillin-associated cytoskeletal reorganization. In summary, our studies revealed THSD7A has a wide range of effects beyond cell migration on primary endothelial cells. Further analysis of THSD7A will shed light on physiological mechanisms of endothelial cells, and may provide new insights into relevant pathological disorders.
1. Breier, G. Angiogenesis in embryonic development--a review. Placenta 21 Suppl A, S11-5 (2000).
2. Augustin, H.G. Angiogenesis in the female reproductive system. EXS, 35-52 (2005).
3. Reynolds, L.P. & Redmer, D.A. Angiogenesis in the placenta. Biol Reprod 64, 1033-40 (2001).
4. Bergers, G. & Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3, 401-10 (2003).
5. Alon, T. et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1, 1024-8 (1995).
6. Benjamin, L.E. & Keshet, E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci U S A 94, 8761-6 (1997).
7. Rousseau, S., Houle, F. & Huot, J. Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc Med 10, 321-7 (2000).
8. Soldi, R. et al. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18, 882-92 (1999).
9. Masson-Gadais, B., Houle, F., Laferriere, J. & Huot, J. Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 8, 37-52 (2003).
10. Ferrara, N. & Kerbel, R.S. Angiogenesis as a therapeutic target. Nature 438, 967-74 (2005).
11. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111, 1287-95 (2003).
12. Cardones, A.R. & Banez, L.L. VEGF inhibitors in cancer therapy. Curr Pharm Des 12, 387-94 (2006).
13. Good, D.J. et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87, 6624-8 (1990).
14. Rastinejad, F., Polverini, P.J. & Bouck, N.P. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345-55 (1989).
15. Lawler, J. & Detmar, M. Tumor progression: the effects of thrombospondin-1 and -2. Int J Biochem Cell Biol 36, 1038-45 (2004).
16. Short, S.M. et al. Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by beta1 integrins. J Cell Biol 168, 643-53 (2005).
17. Adams, J.C. Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol 17, 25-51 (2001).
18. Dawson, D.W. et al. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 138, 707-17 (1997).
19. Sipes, J.M., Krutzsch, H.C., Lawler, J. & Roberts, D.D. Cooperation between thrombospondin-1 type 1 repeat peptides and alpha(v)beta(3) integrin ligands to promote melanoma cell spreading and focal adhesion kinase phosphorylation. J Biol Chem 274, 22755-62 (1999).
20. Lamalice, L., Le Boeuf, F. & Huot, J. Endothelial cell migration during angiogenesis. Circ Res 100, 782-94 (2007).
21. Chhabra, E.S. & Higgs, H.N. The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9, 1110-21 (2007).
22. Mitchison, T.J. & Cramer, L.P. Actin-based cell motility and cell locomotion. Cell 84, 371-9 (1996).
23. Burridge, K., Fath, K., Kelly, T., Nuckolls, G. & Turner, C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 4, 487-525 (1988).
24. Lock, J.G., Wehrle-Haller, B. & Stromblad, S. Cell-matrix adhesion complexes: master control machinery of cell migration. Semin Cancer Biol 18, 65-76 (2008).
25. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-87 (2002).
26. Brown, M.C. & Turner, C.E. Paxillin: adapting to change. Physiol Rev 84, 1315-39 (2004).
27. Maruyama, Y. The human endothelial cell in tissue culture. Z Zellforsch Mikrosk Anat 60, 69-79 (1963).
28. Jaffe, E.A., Nachman, R.L., Becker, C.G. & Minick, C.R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52, 2745-56 (1973).
29. Kabir-Salmani, M. et al. Alphavbeta3 integrin signaling pathway is involved in insulin-like growth factor I-stimulated human extravillous trophoblast cell migration. Endocrinology 144, 1620-30 (2003).
30. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-5 (1970).
31. Nabi, I.R. The polarization of the motile cell. J Cell Sci 112 ( Pt 12), 1803-11 (1999).
32. Haubner, R. Alphavbeta3-integrin imaging: a new approach to characterise angiogenesis? Eur J Nucl Med Mol Imaging 33 Suppl 1, 54-63 (2006).
33. Gao, B., Saba, T.M. & Tsan, M.F. Role of alpha(v)beta(3)-integrin in TNF-alpha-induced endothelial cell migration. Am J Physiol Cell Physiol 283, C1196-205 (2002).
34. Woods, A.J., White, D.P., Caswell, P.T. & Norman, J.C. PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions. EMBO J 23, 2531-43 (2004).
35. van der Flier, A. & Sonnenberg, A. Function and interactions of integrins. Cell Tissue Res 305, 285-98 (2001).
36. Schaller, M.D. Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459-72 (2001).
37. Hodivala-Dilke, K.M., Reynolds, A.R. & Reynolds, L.E. Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res 314, 131-44 (2003).
38. Slack, B.E. Tyrosine phosphorylation of paxillin and focal adhesion kinase by activation of muscarinic m3 receptors is dependent on integrin engagement by the extracellular matrix. Proc Natl Acad Sci U S A 95, 7281-6 (1998).
39. Thierry-Mieg, D. & Thierry-Mieg, J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7 Suppl 1, S12 1-14 (2006).
40. Mazaki, Y., Hashimoto, S. & Sabe, H. Monocyte cells and cancer cells express novel paxillin isoforms with different binding properties to focal adhesion proteins. J Biol Chem 272, 7437-44 (1997).
41. Kiosses, W.B., Shattil, S.J., Pampori, N. & Schwartz, M.A. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol 3, 316-20 (2001).
42. Huttenlocher, A. Cell polarization mechanisms during directed cell migration. Nat Cell Biol 7, 336-7 (2005).
43. Eden, S., Rohatgi, R., Podtelejnikov, A.V., Mann, M. & Kirschner, M.W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790-3 (2002).
44. Cory, G.O. & Ridley, A.J. Cell motility: braking WAVEs. Nature 418, 732-3 (2002).
45. Welch, M.D. & Mullins, R.D. Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18, 247-88 (2002).
46. West, K.A. et al. The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J Cell Biol 154, 161-76 (2001).
47. Deakin, N.O. & Turner, C.E. Paxillin comes of age. J Cell Sci 121, 2435-44 (2008).
48. Ridley, A.J., Paterson, H.F., Johnston, C.L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401-10 (1992).
49. Price, L.S., Leng, J., Schwartz, M.A. & Bokoch, G.M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol Biol Cell 9, 1863-71 (1998).
50. Valdez, G. et al. Trk-signaling endosomes are generated by Rac-dependent macroendocytosis. Proc Natl Acad Sci U S A 104, 12270-5 (2007).
51. Varner, J.A., Brooks, P.C. & Cheresh, D.A. REVIEW: the integrin alpha V beta 3: angiogenesis and apoptosis. Cell Adhes Commun 3, 367-74 (1995).