研究生: |
曾柏棠 Tseng, Po Tang |
---|---|
論文名稱: |
鑽石薄膜複合垂直寡層石墨之場發射特性研究 Field Emission Characteristic Study on Vertical Few-layer Graphite/Diamond Composite Film |
指導教授: |
蔡宏營
Tsai, Hung Yin |
口試委員: |
李紫原
Lee, Chi Yuang 王星豪 Wang, Shing Hoa 曾仕君 Tseng, Shih Chun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 場發射 、垂直寡層石墨 、微奈米鑽石 、八角錐體針尖 、場增益因子 |
外文關鍵詞: | field emission, vertical few-layer graphite, microcrystalline and ultrananocrystalline diamond, octagonal cone, field enhancement factor |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於製作出高場發射效應之鑽石複合垂直寡層石墨奈米針尖形貌,透過場發射效應低耗能及高功率優點,可應用於未來更薄型之面板或製作良好散熱元件。
研究方法透過製作八角錐體微奈米鑽石針尖薄膜,並於鑽石奈米針尖上成長垂直寡層石墨加強其場發射效應及使用壽命。在成長鑽石及垂直寡層石墨的過程中,改變通入氮氣的多寡提高鑽石針尖複合垂直寡層石墨形貌之場發射效應。以拉曼光譜儀量測鑽石及垂直寡層石墨性質,掃描式電子顯微鏡觀察鑽石針尖及垂直寡層石墨形貌,並測量其場發射效應。
本研究首次提出以微奈米鑽石複合垂直寡層石墨的方式製作八角錐體針尖形貌之創新針尖陣列,透過鑽石的高穩定性增加場發射元件的使用壽命及垂直寡層石墨的高深寬比與良好電性增加場發射效應。所成長之鑽石針尖薄膜為微米鑽石及超奈米鑽石,垂直寡層石墨為交錯片狀且其內層由鑽石結構組成為以往研究未曾發現的形式。
本研究中以N2/H2/CH4 = 40/80/20所成長之鑽石複合垂直寡層石墨針尖擁有2.60 V/μm低起始電場及1921場增益因子,並擁有高穩定壽命,展現出優異之場發射特性。
The purpose of this study is to produce the diamond tip arrays composite vertical few-layer graphite with high field emission effect. Because of its lower energy cost and high power advantages. It can be applied to thin the panel or make better cooling components.
The diamond tip arrays with octagonal cone are formed by microwave plasma enhanced chemical vapor deposition (MPCVD) on silicon. Through the diamond and vertical few-layer graphite deposition, change the amount of nitrogen which leads to improve the diamond tip field emission. The diamond tip arrays and vertical few-layer graphite morphology are examined by Raman spectroscopy and scanning electron microscopy (SEM), respectively. The field emission effect with different diamond composite vertical few-layer graphite arrays are examined by field emission meter.
The research first proposed the diamond tip composite vertical few-layer graphite structure with novel octagonal cone array to improve the field emission effect and lifetime because of the high pitch height ratio of vertical few-layer graphite and the high stability of diamond. The microcrystalline and ultrananocrystalline diamond are growth in this research. Besides, the staggered arrangement of vertical few-layer graphite and the diamond structure growth inside the vertical graphite flake is different from previous studies.
In this study, the diamond tip arrays composite vertical few-layer graphite growth by N2/H2/CH4 = 40/80/20 shows good filed emission stability and high field emission characteristics with low turn-on field of 2.60 V/μm and field enhancement factor of 1921.
[1] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology: Wiley, 1994.
[2] R. H. Fowler and L. Nordheim, “Electron emission in entense electric fields,” Proceedings of the Royal Society of London. Series A, vol. 119, pp. 173-181, 1928.
[3] J. He, P. H. Cutler, and N. M. Miskovsky, “Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters,” Applied Physics Letters, vol.59, pp.1644-1646, 1991.
[4] K. L. Jensen and E. G. Zaidman, “Field emission from an elliptical boss: Exact versus approximate treatments,” Journal of Applied Physics, vol.63, pp.702-704, 1993.
[5] K. L. Jensen and E. G. Zaidman, “Field emission from an elliptical boss: Exact and approximate forms for area factors and currents,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, pp.776-780, 1994.
[6] K. L. Jensen and E. G. Zaidman, “Analytic expressions for emission in sharp field emitter diodes,” Journal of Applied Physics, vol.77, pp.3569-3571, 1995.
[7] T. S. Fisher, “Influence of nanoscale geometry on the thermo-dynamics of electron field emission,” Applied Physics Letters, vol.79, pp.3699-3701, 2001.
[8] T. S. Fisher and D. G. Walker, “Thermal and electrical energy transport and conversion in nanoscale electron field emission processes,” Journal of Heat Transfer, vol.124, pp.954-962, 2002.
[9] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach, “Scanning field emission from patterned carbon nanotube films,” Applied Physics Letters, vol.76, pp.2071-2073, 2000.
[10] J. S. Suh, K. S. Jeong, and J. S. Lee , “Study of the field-screening effect of highly ordered carbon nanotube arrays,” Applied Physics Letters, vol.80, pp.2392-2394, 2002.
[11] R. C. Smith and S. R. P. Silva, “Maximizing the electron field emission performance of carbon nanotube arrays,” Applied Physics Letters, vol.94, pp.133104-1-133104-3, 2009.
[12] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol.6, pp.183-191, 2007.
[13] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol.457, pp.706-710, 2009.
[14] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol.324, pp.1312-1314, 2009.
[15] Y. Ando, X. Zhao, and M. Ohkohchi, “Production of petal-like graphite sheets by hydrogen arc discharge,” Carbon, vol.35, pp.153-158, 1997.
[16] Y. Wu, P. Qiao, T. Chong, and Z. Shen, “Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition,” Advanced Materials, vol.14, pp.64-67, 2002.
[17] L. Zeng, D. Lei, W. Wang, J. Liang, Z. Wang, N. Yao and B. Zhang, “Preparation of carbon nanosheets deposited on carbon nanotubes by microwave plasma-enhanced chemical vapor deposition method,” Applied Surface Science, vol.254, pp.1700-1704, 2008.
[18] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology, vol.19, 305604, 2008.
[19] A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury, A. Volodin, and C. V. Haesendonck, “Field emission from vertically aligned few-layer graphene,” Journal of Materials Chemistry, vol.104, pp.084301-5, 2008.
[20] Y. Zhang, J. Du, S. Tang, P. Liu, S. Deng, J. Chen and N. Xu, “Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology,” Nanotechnology, vol.23, 015202, 2012.
[21] J. Dong, Z. Yao, T. Yang, L. Jiang and C. Shen, “Control of superhydrophilic and superhydrophobic graphene interface,” Scientific Reports, vol.3, 1733, 2013.
[22] D. H. Seo, S. Yick, Z. J. Han, J. H Fang and K. K. Ostrikov, “Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes,” ChemSusChem, vol.7, pp.2317–2324, 2014.
[23] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology: Wiley, 1994.
[24] L. M. Malarda, M. A. Pimentaa, G. Dresselhausb, M.S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol.473, pp.51-87, 2009.
[25] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant and P. Zapol, "Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films," Applied Physics Letters, vol.79, pp.1441-1443, 2001.
[26] I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sens. Actuators, A Phys, vol.93, pp.138-147, 2001.
[27] X. Yu, B. Zhang, J. Guo, H. Yang, Y. Zhang, S. Shen and Y. Qi, “Fabrication of continuous V-grooves with Si(110) sidewalls using TiO2 resist mask by anisotropic wet etching,” J. Micro/Nanolith. MEMS MOEMS., vol.8, 013012, 2009.
[28] Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale, vol.5, pp.5180-5204, 2013.
[29] 邱文俊,KOH/醇類蝕刻液系統應用於單晶矽濕式蝕刻之研究,博士論文,國立清華大學化學工程系研究所,新竹,2004。