研究生: |
鍾惠如 Jhong, Huei-Ru |
---|---|
論文名稱: |
深共熔溶劑應用於染料敏化太陽能電池之低揮發度電解液之研究 The Study of Deep Eutectic Solvents and Their Applications to Nonvolatile Electrolytes for Dye-Sensitized Solar Cells |
指導教授: |
王詠雲
Wang, Yung-Yun 萬其超 Wan, Chi-Chao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 123 |
中文關鍵詞: | 離子液體 、深共熔溶劑 、染料敏化太陽能電池 、電解液 |
外文關鍵詞: | Ionic liquid, Deep eutectic solvents, Dye-sensitized solar cells, Electrolytes |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文嘗試合成多種深共熔溶劑以做為染料敏化太陽能電池(Dye-sensitized solar cells, DSSC)之非揮發性電解液。深共熔溶劑 (Deep Eutectic Solvents, DES)為一種新型態之離子液體,主要是由四級胺塩鹵化膽鹼與氫鍵提供者諸如甘油、有機酸、脲素等以一定莫耳比例混和使其達到共熔點之共熔混合物。此類共熔混合物與傳統之咪唑類離子液體雷同,皆具有良好之溶劑性質、高電化學導電度與非揮發性。但是深共熔溶劑有別於傳統咪唑類離子溶液之優勢在於:(1)合成簡易,(2)原物料便宜,(3)高環保特性,因此極具潛力做為DSSC之非揮發性電解液。
本論文利用四級胺鹽鹵化膽鹼與尿素或甘油等氫鍵提供物合成多種深共熔溶劑:G.CI (eutectic mixture of glycerol and choline iodide)、U.CI (eutectic mixture of urea and choline iodide)、G.CC (eutectic mixture of glycerol and choline chloride) 及U.CC (eutectic mixture of urea and choline chloride),並將之與氧化還原對I-/I3-及PMII(3-propyl-1-methylimidazoliu iodide)混合以形成二元離子液體電解液,且藉由實際組成DSSC以測試其光電轉換效能。目前,我們已成功開發出甘油碘化膽鹼(G.CI)此類深共熔溶劑,其二元離子電解液具有與其他文獻可比擬之電池效能:Jsc = 12.0 mA cm-2, Voc = 553 mV, FF = 0.582, η=3.88 %。實驗結果顯示,甘油碘化膽鹼(G.CI)電解液之導電度高達5.3 mS cm-1,且I3-離子在此電解液中的擴散系數更高達8.7 × 10-7 cm2 s-1。此兩項導電度指標相較於目前文獻中報導具有最佳電池效能表現的PMII/EMIB(CN)4電解液系統之導電性來得高。據Gratzel等人之研究,PMII/EMIB(CN)4電解液之導電度為4.77 mS cm-1,而I3-離子在此電解液中的擴散系數則為3.42 × 10-7 cm2 s-1。故由此可知,本研究研發出之甘油碘化膽鹼(G.CI)電解液的確為一高導電度之非揮發性電解液,其導電度優於眾多離子液體電解液,使得氧化還原對在其中之質傳較快,而此項特性亦反映在電池之高電流密度上。
然而,在此甘油碘化膽鹼電解液系統中,我們加入了15 wt. %的去離子水以降低甘油碘化膽鹼之熔點與黏度。但是在經過長達三個月的電池長期穩定性觀測中,發現水的確會影響該電解液之穩定性,使電池長期效能下降。經實驗研究,此可能肇因於水與電解液中之I3-反應而使得電解液與染料之崩解。
有鑑於此,本研究將嘗試將甘油碘化膽鹼電解液中之水分去除,以研發出一無水且高穩定性之深共熔溶劑電解液系統,並同時兼顧可接受之電池效能。最後成功開發出甘油丁酸基碘化膽鹼(G.BCI, eutectic mixture of glycerol and butyrylcholine iodide)此無水、無PMII之全深共熔溶劑電解液,其電池效能為:Jsc = 10.1 mA cm-2, Voc = 662 mV, FF = 0.696, η=4.35 %。綜合以上所言,深共熔溶劑電解液之高導電度、環保且成本便宜之特性使得其做為DSSC之非揮發性電解液的潛力大增。
1. Peter Wasserscheid, Thomas Welton, “ Ionic liquid in synthesis”, Wiley, 2002.
2. Tetsuya Tsuda and Charles L. Hussey, “Electrochemical applications of room-temperature ionic liquids”, The Electrochemical Society Interface 2007, 42-49.
3. Bernadette M. Quinn, Zhifeng Ding, Roger Moulton, and Allen J. Bard,” Novel electrochemical studies of ionic liquids”, Langmuir 2002, 18, 1734-1742.
4. D. Kuang, C. Klein, Z. Zhang, S. Ito, J. E. Moser, S. M. Zakeeruddin, M. Gratzel, “ Stable,high-efficiency ionic –liquid-based mesoscopic sye-sensitized solar cells”, Small 2007, vol. 3, no. 12, 2094-2102.
5. P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, and M. Gratzel ,” Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids”, J. Am. Chem. Soc. 2005, 127, 6850-6856.
6. R. Kawano, H. Matsui, C. Matsuyama, A. Sato, M. Susan, N. Tanabe,”High performance dye-sensitzied soalr cells using ionic liquids as their electrolytes”, Journal of Photochemistry and Photobiology A 2004, 164, 87-92.
7. H. Matsui, K. Okada, T. Kawashima, T. Ezure, N. Tanabe, R. Kawano, M. Watanabe,”Application of an ionic liquid-based electrolyte to a 100 mm × 100 mm sized dye-sensitized solar cell”, Journal of Photochemistry and Photobiology A 2004, 164, 129-135.
8. R. Kawano and M. Watanabe,”Anomaly of charge transport of an iodide/triiodide redox couple in ionic liquid and its importance in dye-sensitized solar cells”, Chem. Commun. 2005, 2107-2109.
9. P. Wang, S. M. Zakeeruddin, et al., “A binary ionic liquid electrolyte to achieve ≧7% power conversion efficiencies in dye-sensitized solar cells”, Chem. Mater. 2004, 16, 2694-2696.
10. Q. Dai, D. B. Menzies, et al.,”Dye-sensitized nanocrystalline solar cells incorporating ethylmethylimidazolium-based ionic liquid electrolytes”, C. R. Chimie 2006, 9, 617-621.
11. P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, and M. Gratzel ,” Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids”, J. Am. Chem. Soc. 2005, 127, 6850-6856..
12. P. Wang, S. M. Zakeeruddin, J.-E. Moser, Michael Gra1tzel, “A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells”, J. Phys. Chem. B 107 (2003) 13280-13285.
13. D. Kuang, P. Wang, S Ito, S. M. Zakeeruddin, Michael Gratzel, J. Am. Chem. Soc. 128 (2006) 7732-7733.
14. Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin, M. Gratzel, “High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts”, Nature Materials 7 (2008) 626-630.
15. Fan-Tai Kong, Song-Yuan Dai, and Kong-Jia Wang, “Review of recent progress in dye-sensitized solar cells”, Advances in optoelectronics 2007.
16. H. Paulsson, A. Hagfeldt, and L. Kloo, ”Molten and solid trialkylsulfonium iodides and their poluiodides as electrolytes in dye-sensitized nanocrystalline solar cells”, J. Phys. Chem. 2003, 107, 13665-13670.
17. P. Wang, S. M. Zekeeruddin, J.-E. Moser, R. Huphry-Baker, and M. Gratzel, ”A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells., J. Am. Chem. Soc. 2004, 126, 7164-7165.
18. S. Yanagida, W. Kubo, T Kitamura, Y. Wada, ”Quasi-solid-state dye-sensitized solar cells using room-temperature molten salts and a low molecular weight gelator”, Chemical Commun. 2002, 4, 374-375.
19. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, M. Gratzel, ”Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells”, J. Am. Chem. Soc. 2003, 125, 1166-1167.
20. P. Wang, S. M. Z akeeruddin, J.-E. Moser, and M. Gratzel, ”A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells”, J. Phys. Chem. 2003,107, 13280-13285.
21. D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, and M. Gratzel, ”Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte”, J. Am. Chem. Soc. 2006, 128, 7732-7733.
22. P. Wang, C. Klein, J.-E. Moser, R. Humphry-Baker, N.-L. Cevey-Ha, R. Charvet, P. Comte, S. M. Zakeeruddin & M. Grätzel, ”Amphiphilic ruthenium sensitizer with 4,4’-diphosphonic acid-2,2’-bipyridine as as anchoring ligand for nanocrystalline dye sensitized solar cells’, J. Phys. Chem. 2004, 17553-17559.
23. N. Mohmeyer, D. Kuang, P. Wang, H.-W. Schmidt, S. M. Zakeeruddin,
and M. Gr¨atzel ,” An efficient organogelator for ionic liquids to prepare stable quasi-solid state sye-sensitized solar cells”, Journal of Materials Chemistry 2006, 16, 2978-2983.
24. F. Mazille, Z. Fei, and D. Kuang, ”Influence of ionic liquids bearing functional groups in dye-sensitized solar cell”, Inorganic Chemistry 2006,45, 1585-1590.
25. P. Wang, S. M. Zekeeruddin, J.-E. Moser, R. Huphry-Baker, and M. Gratzel, ”A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells., J. Am. Chem. Soc. 2004, 126, 7164-7165.
26. H. Paulsson, A. Hagfeldt, and L. Kloo, ”Molten and solid trialkylsulfonium iodides and their poluiodides as electrolytes in dye-sensitized nanocrystalline solar cells”, J. Phys. Chem. 2003, 107, 13665-13670.
27. W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, and S. Yanagida, ”Photocurrent-determing processes in quasi-solid-state dye sensitized solar cells using ionic gel electrolytes”, J. Phys. Chem. B 2003, 107, 4374-4381.
28. P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Gratzel, “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte”, Chemical Commun. 2002, 8, 2972-2973.
29. V. Jovanovski, E. Stathatos, B. Orel, and P. Lianos,” Dye-sensitized solar cells with electrolyte based on a trimethoxysilane-dericatized ionic liquid”, Thin Solid Films, 2006, 511,634-637.
30. K. Suzuki, M. Yamaguchi, M. Kumagai, N. Tanabe, and S. Yanagida,” Dye-sensitized solar cells tith ionic gel electrolytes prepared from imidazolium salts and agarose”, Comptes Rendus Chimie., 2006, 9, 611-616.
31. H. Usui, H. Matsui, N. Tanabe, and S. Yanagida, ” Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes”, Journal of Photochemistry and Photobiology 2004, 164, 97-101.
32. N. Papageorgiou, ” Counter-electrode function in nanocrystalline photoelectrochemical cell configurations”, Coordination Chemistry Review. 2004, 248, 1421-1446.
33. H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara, Y. Ito, and Y. Miyazaki, ”The application of room temperature molten salt with low viscosity to the electrolyte for dye-sensitized solar cell”, The chemical society of Japan 2001,26-27.
34. Ryuji Kawano and Masayoshi Watanabe, “Equilibrium potentials and charge transport of an I-/I3- redox couple in an ionic liquid”, J. Am. Chem. Soc Commun. 2003,330-331.
35. M. Zistler, P. Wachter, P. Wasserscheid, D. Gerhard, A. Hinsch, R. Sastrawan, H. J. Gores, “Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-Stokesian diffusion behavior in binary mixtures of two ionic liquids”, Electrochimica Acta 2006, 52, 161-169.
36. I. Ruff, V. J. Friedrich, J. Phys. Chem. 1971, 75, 3297. H. Dahms, J. Phys. Chem.1968,72, 362. I. Ruff, L. Botar, J. Chem. Phys. 1985, 83, 1292.
37. N. Yamanaka, R. Kawano, W. Kudo, N. Masaki, T. Kitamura, Y. Wada, M> Watanabe, and S. Yanagida, “Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes”, J. Phys. Chem. 2007, 111,4763-4769.
38. A. P. Abbott, G. Capper, D. L. Davies, K. J. McKenzie, S. U. Obi, “Solubility of metal oxides in deep eutectic solvents based on choline chloride”, J. Chem. Eng. Data 2006, 51, 1280-1282.
39. D. Kuang, S. Uchida, R. H.-Baker, S. M. Zakeeruddin, and M. Gratzel, “Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers”, Angew. Chem. Int. Ed. 47 (2008) 1923-1927.
40. K. Sayama, S. Tsukagoshi, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, and H. Arakawa, “Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film,” Journal of Physical Chemistry B, vol. 106, no. 6, 1363–1371, 2002.
41. K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%”, Chemical Communications, no. 6, pp. 569–570, 2001.
42. K. Hara, Z.-S. Wang, T. Sato, S.W. Zhong. S. Tadatake, A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, X. Kasada, A. Shinpo, and S. Suga, “Oligothiophenecontaining coumarin dyes for efficient dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 109, no. 32, pp.15476–15482, 2005.
43. K. Hara, M. Kurashige, Y. Dan-Oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, and H. Arkawa, “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New Journal of Chemistry, vol. 27, no. 5, pp. 783–785, 2003.
44. Z. S. Wang, Y. Cui, K. Hara, “High efficiency light-harvesting coumarin dyes for efficient and stable dyesensitized solar cells,” in The 16th International Conference of Photochemical Conversion and Solar Storage, Uppsala, Sweden, July 2006, W4-P-95.
45. T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N.A. Anderson, X. Ai, T. Lian, and S. Yanagida,“Phenyl-conjugated oligoene sensitizers for TiO2 solar cells,” Chemistry of Materials, vol. 16, no. 9, pp. 1806–1812, 2004.
46. K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, “Novel polyene dyes for highly efficient dye-sensitized solar cells,” Chemical Communications, no. 2, pp. 252–253, 2003.
47. S.-L. Li, K.-J. Jiang, K.-F. Shao, and L.-M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells,” Chemical Communications, no. 26, pp. 2792–2794, 2006.
48. T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, “High efficiency of dye-sensitized solar cells based on metal-free indoline dyes,” Journal of the American Chemical Society, vol. 126, no. 39, pp. 12218–12219, 2004.
49. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, P. Charvet, P. Comte, Md.K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, “High efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Advanced Materials, vol. 18, no. 9, pp. 1202–1205, 2006.
50. Z.-S. Wang, F.-Y. Li, and C.-H. Huang, “Photocurrent enhancement of hemicyanine dyes containing RSO−3 group through treating TiO2 films with hydrochloric acid,” Journal of Physical Chemistry B, vol. 105, no. 38, pp. 9210–9217, 2001.
51. A. P. Abbott, R. C. Haris, and K. S. Ryder, “Application of hole theory to define ionic liquids by their transport properties”, Journal of Physical Chemistry B, vol. 111, pp.4910–4913, 2007.
52. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons, USA (1999).
53. Y. Liu, A. Hagfeldt, X. R. Xio, S.-E. Lindquist, “ Investigation of influence of redox species on the interfacial energetic of a dye-sensitized nanoporous TiO2 solar cell”, Solar Energy Materials and Solar Cells, vol.55, pp. 267-281, 1998.
54. K. J. Hanson, C. W. Tobias, “Electrochemistry of Iodide in Propylene Carbonate,”J. Electrochem. Soc. 134 (9) (1987) 2204