簡易檢索 / 詳目顯示

研究生: 楊裕祥
Yu-Hsiang Yang
論文名稱: 合成並探討單層奈米碳管的特性與場發射性質
Synthesis, Characterization and Field emission of Single Wall Carbon Nanotubes
指導教授: 施漢章
Han C. Shih
張一熙
Y.S. Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 85
中文關鍵詞: 單層碳管場發射溶膠凝膠法
外文關鍵詞: SWNT, Field emission, Sol-gel MgO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本工作主要在研究利用化學氣相沈積法熱裂解乙醇來合成單層奈米碳管並研究其特性,以鐵及鉬為催化劑沈積在氧化鎂粉末上,探討不同表面積的溶膠凝膠氧化鎂催化劑載體對於合成單層奈米碳管的影響,本實驗製程在900°C下通入乙醇維持氣壓5torr合成單層奈米碳管,FESEM表面形貌觀察中發現單層碳管結構有呈現片狀的特別結構,由HRTEM觀察中發現聚集成束的單層奈米碳管管徑分布為0.6-1.6 nm,獨立的單層奈米碳管管徑分布為2.4-6 nm,從Raman光譜分析中發現本實驗合成之單層碳管有很低的ID/IG值顯示出有不錯的石墨化程度而且僅含有少量的非晶質碳,並利用RBM特性峰計算出單層碳管管徑分布為0.6-1.6 nm,熱重分析中發現利用乙醇作為碳源僅僅含有少於8.7%非晶質碳顯示出乙醇可以提升單層奈米碳管的純度,在電子場發射方面則擁有非常低的起始電場強度(Eto=0.008V/μm)及臨界電場強度(Ethr=0.07 V/μm)顯示出本實驗的產物擁有很好的電子場發射性質。


    In this work, single wall carbon nanotubes (SWNTs) were synthesized by the pyrolysis of alcohol in a CVD process and characterized. The catalyst was fabricated by depositing Fe and Mo particles on the surface of MgO powders by sol-gel methode. In this experiment, the effects of different surface areas of the catalyst support were discussed. SWNTs were synthesized on the surface of Fe-Mo/MgO under 5torr C2H5OH atmosphere at 900°C. From FESEM observation, SWNTs were found flake-like structure. SWNTs have diameters in the range of 0.6-1.6 nm in bundles and in the range of 2.4-6 nm for isolated SWNTs. Raman spectrum shows that SWNTs in this experiment have low ID/IG value which means high purity and high quality of SWNTs, and that SWNTs have diameters in the range of 0.6-1.6 nm as calculated from the RBM peaks. From DTA-TGA analysis, high-purity of SWNTs was demonstrated. The extremely low turn-on field (Eto=0.008 V/μm) and threshold field (Ethr=0.07 V/μm) show that the SWNTs have excellent performance on electron field emission.

    總目錄 摘要 I Abstract II 誌謝 III 總目錄 V 圖目錄 VIII 表目錄 XI 第一章緒論 1 1.1前言: 1 1.2研究動機與目的: 1 1.3各章提要: 2 第二章文獻回顧 4 2.1奈米碳管的介紹: 4 2.2奈米碳管的結構: 5 2.3奈米碳管的合成方式: 8 2.4奈米碳管的催化劑製備: 10 2.4-1催化劑與碳源的種類影響: 11 2.4-2載體的比表面積影響: 12 2.5奈米碳管的Raman光譜檢測: 13 2.6奈米碳管的應用: 17 2.6-1場發射螢幕顯示器 17 第三章實驗的步驟及方法 19 3.1實驗方法概述 19 3.2實驗流程 20 3.3實驗方法 21 3.3-1催化劑製備 21 3.3-2實驗設備 21 3.3-3碳管的合成 23 3.3-4參數解說 24 3.4碳管的特徵分析 26 3.4-1表面形貌分析 26 3.4-1.1場發射掃描式電子顯微鏡(FESEM) 26 3.4-1.2高解析穿透式電子顯微鏡(HRTEM) 26 3.4-2結構分析 27 3.4-2.1催化劑結構分析 27 3.4-2.2 Raman光譜 27 3.4-2.3抗氧化分析 29 3.4-3場發射性質測試 30 第四章結果與討論 31 4.1前言 31 4.2催化劑成分分析 31 4.3催化劑濃度影響 32 4.3-1 FESEM表面形貌觀察 33 4.3-2 Raman光譜分析 33 4.3-3綜合分析 36 4.4製程溫度效應 39 4.4-1 FESEM表面形貌觀察 39 4.4-2 Raman光譜分析 39 4.4-3綜合分析 45 4.5 製程時間效應 46 4.5-1 FESEM表面形貌觀察 46 4.5-2 Raman光譜分析 46 4.5-3綜合分析 52 4.6製程氣體壓力影響 53 4.6-1 FESEM表面形貌觀察 53 4.6-2 Raman光譜分析 55 4.6-3 綜合分析 58 4.7催化劑載體表面積影響 59 4.7-1 FESEM表面形貌分析 59 4.7-3綜合分析 66 4.8 綜合結果分析 67 4.8-1 FESEM表面形貌分析 67 4.8-2 HRTEM觀察 69 4.8-3 Raman光譜分析 74 4.8-4 抗氧化分析 76 4.8-5場發射性質分析 78 第五章結論 80 第六章參考文獻 82

    [1] S.L. Sung, S.H. Tsai, C.H. Tseng, F.K. Chiang, X.W. Liu, and H.C. Shih, “A Novel Form of Carbon Nitride – Well-Aligned Carbon Nitride Nanotubes and Their Characterization”, J. Mater. Res., Vol. 15, pp. 502-510 (2000).
    [2] S.H. Tsai, F.K. Chiang, T.G. Tsai, F.S. Shieu, and H.C. Shih, “Synthesis and Characterization of Aligned Amorphous Carbon Nanotubes by Electron Cyclotron Resonance Plasma”, Thin Solid Films, Vol. 366, pp. 11-15 (2000).
    [3] S.H. Tsai, C.T. Shiu, W.J. Jong, and H.C. Shih, “The Welding of Carbon Nanotubes”, Carbon, Vol. 38, pp.1879-1902 (2000).
    [4] S.H. Tsai, C.T. Shiu, S.H. Lai, and H.C. Shih, “Tubes on Tube – a Novel Form of Aligned Carbon Nanotubes”, Carbon, Vol. 40, pp. 1597-1600 (2002).
    [5] S.H. Tsai, C.T. Shiu, S.H. Lai, L.H. Chan, W.J. Hsieh, and H.C. Shih, “In Situ Growing and Etching of Carbon Nanotubes on Silicon under Microwave Plasma”, J. Mater. Sci. Lett., Vol 21, pp. 1709-1711 (2002).
    [6] L.H. Chan, K.H. Hong, S.H. Lai, X.W. Liu, and H.C. Shih, “The Formation and Characterization of Palladium Nanowires in Growing Carbon Nanotubes Using Microwave Plasma-enhanced Chemical Vapor Deposition”, Thin Solid Films, Vol. 423, pp. 27-32 (2003).
    [7] L.H. Chan, K.H. Hong, D.Q. Xiao, W.J. Hsieh, S.H. Lai, T.C. Lin, F.S. Shieu, K.J. Chen, H.C. Cheng, and H.C. Shih “Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes”, Appl. Phys. Lett., Vol. 82, pp. 4334-4336 (2003).
    [8] L.H. Chan, K.H. Hong, D.Q. Xiao, T.C. Lin, S.H. Lai, W.J. Hsieh, and H.C. Shih, “Resolution of the Binding Configuration in Nitrogen-Doped Carbon Nanotubes”, Phys. Rev. B., Vol. 70, pp. 125408-7 (2004).
    [9] S.H. Lai, K.L. Chang, K.P. Huang, P. Lin, and H.C. Shih, “Electron Filed Emission from Various Morphologies of Fluorinated Amorphous Carbon Nanotubes”, Appl. Phys. Lett., Vol. 85, pp. 6248-6250 (2004).
    [10] S. Iijima, “Helical microtubules of graphitic carbon”, Nature Vol. 354, pp. 56-58 (1991).
    [11] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature Vol. 363, pp. 603-605 (1993).
    [12] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, “Science of Fullerenes & Carbon Nanotubes”. San Diego:Academic Press, 1996.
    [13] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of chiral graphene tubules”, Appl. Phys. Lett. Vol. 60, pp. 2204-2206 (1992).
    [14] V. N. Popov, N. Valentin, “Carbon nanotubes: properties and application”, Mater. Sci. Eng. R Vol. 43, pp. 61-102 (2004).
    [15] M. Ishigami, J. Cumings, A. Zettl, S. Chen, “A simple method for the continuous production of carbon nanotubes”, Chem. Phys. Lett. Vol. 319, pp. 457-459 (2000).
    [16] D. S. Bethune, C.H. Kiang, M.S. De Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature Vol. 363 pp.605-607 (1993).
    [17] N. Braidy, M. A. El Khakam, and G. A. Botton, “Effect of laser intensity on yield and physical characteristics of single wall carbon nanotubes produced by the Nd:YAG laser vaporization method”,Carbon Vol. 40, pp. 2835-2842 (2002).
    [18] Y. Zhang, H. Gu, K. Suenagea, and S. Iijima, “Heterogeneous growth of B-C-N nanotubes by laser ablation”, Chem. Phys. Lett. Vol. 279, pp. 264-269 (1997).
    [19] J. F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Konya, A. Fonseca, C. Laurent, J.B. Nagy, “Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method”, Chem. Phys. Lett. Vol. 317, pp. 83-89 (2000).
    [20] A. Peigney, P. Coquay, E. Flahaut, R.E. Vandenberghe, E. De Grave, C. Laurent, “A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method”, J. Phys. Chem. B Vol. 105, pp. 9699-9710 (2001).
    [21] J. Geng, C. Singh, A. H. Windle, “Synthesis of high purity single-walled carbon nanotubes in high yield”, Chem. Commun. pp.2666-2667 (2002).
    [22] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno,“Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol”, Chem. Phys. Lett. Vol. 360, pp. 229-234 (2002).
    [23] C. Emmenegger, J.M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Zuttel, L. Schlapbach, “Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism”, Carbon Vol. 41, pp. 539-547 (2003).
    [24] S.N. Zaretskiy, Y.K. Hong, D.H. Ha, J.H. Yoon, J. Cheon, J.Y. Koo, “Growth of carbon nanotubes from Co nanoparticles and C2H2 by thermal chemical vapor deposition”, Chem. Phys. Lett. Vol. 372, pp. 300-305 (2003).
    [25] S.C. Lyu, B.C. Liu, S.H. Lee, C.Y. Park, H.K. Kang, C.W. Yang, C.J. Lee, “Large-Scale Synthesis of High-Quality Single-Walled Carbon Nanotubes by Catalytic Decomposition of Ethylene”, J. Phys. Chem. B, Vol. 108, pp. 1613-1616 (2004).
    [26] Yung Hang Hu and Eli Ruckenstein, “High-Resolution Transmission Electron Microscopy Study of Carbon Deposited on the NiO/MgO Solid Solution Catalysts”, J. Cata. Vol. 184, pp. 298-302 (1999).
    [27] I. Williams, Z. Konya, A. Fonseca, J.B. Nagy, “Heterogeneous catalytic production and mechanical resistance of nanotubes prepared on magnesium oxide supported Co-based catalysts”, Appl. Cata. A:General, Vol. 229, pp. 229-233 (2002).
    [28] Hao Yan, Qingwen Li, Jin Zhang, Zhongfan Liu, “Possible tactics to improve the growth of single-walled carbon nanotubes by chemical vapor deposition”, Carbon Vol. 40, pp. 2693-2698 (2002).
    [29] W.Z. Li, J.G. Wen, M. Sennett, Z.F. Ren, “Clean double-walled carbon nanotubes synthesized by CVD”, Chem. Phys. Lett. Vol. 368, pp. 299-306 (2003).
    [30] P. Chen, H.B. Zhang, K.R. Tsai, et al. “Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on A Ni-MgO Catalyst”, Carbon Vol. 35, pp. 1495-1501 (1997).
    [31] L.B. Avdeeva, D.I. Kochubey, S.K. SHaikhutdunov, “Cobalt catalysts of methane decomposition: accumulation of the filamentous carbon”, Appl. Cata. A: General, Vol. 177, pp. 43-51 (1999).
    [32] Yasushi Soneda, Laurent Duclaux, Francois Beguin, “Synthesis of high quality multi-walled carbon nanotubes from the decomposition of acetylene on iron-group metal catalysts supported on MgO”, Carbon Vol.40, pp.965-969 (2002).
    [33] H.J. Jeong, K.H. An, S.C. Lim, M.S. Park, J.S. Chang, S.E. Park, S.J. Eum, C. W. Yang, C.Y. Park, Y.H. Lee, “Narrow diameter distribution of singlewalled carbon nanotubes grown on Ni–MgO by thermal chemical vapor deposition”, Chem. Phys. Lett. Vol. 380, pp. 263-268 (2003).
    [34] E. Flahaut, A. Peigney, C. Laurent, A. Rousset, “Synthesis of single-walled carbon nanotube–Co–MgO composite powders and extraction of the nanotubes”, J. Mater. Chem. Vol. 10, pp. 249-252 (2000).
    [35] S. Tang, Z. Zhong, Z. Xiong, L. Sun, L. Liu, J. Lin, Z.X. Shen, K.L. Tan, “Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts”, Chem. Phys. Lett. Vol. 350, pp. 19-26 (2001).
    [36] H. Hiura, T.W. Ebbeseb, K. Tanigaki, H. Takahashi, “Raman studies of carbon nanotubes”, Chem. Phys. Lett. Vol. 202, pp. 509-512 (1993).
    [37] A.M. Rao, E. Rither, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, “Diameter-selective raman scattering from vibrational modes in carbon nanotubes”, Science Vol. 275, pp. 187-191 (1997).
    [38] A. Jorio, M. A. Pimenta, A.G. Souza, R Saito, G. Dresselhaus, M.S. Dresselhaus, “Characterizing carbon nanotube samples with resonance Raman scattering”, New Journal of Physics Vol. 5, pp. 139 (2003).
    [39] J.F. Colomer, J.M. Benoit, C. Stephan, S. Lefrant, G. Van Tendeloo, J.B. Nagy, “Characterization of single-wall carbon nanotubes produced by CCVD method”, Chem. Phys. Lett. Vol. 345, pp. 11-17 (2001).
    [40] S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, P.C. Eklund, “Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes”, Phys. Rev Lett. Vol. 80, pp. 3779-3782 (1998).
    [41] W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett. Vol. 75, pp.3129-3131 (1999).
    [42] Y.C. Kim, K.H. Sohn, Y.M. Cho, E.H. Yoo, “Vertical alignment of printed carbon nanotubes by multiple field emission cycles”, Appl. Phys. Lett. Vol. 84, pp. 5350-5352 (2004).
    [43] Bokhimi, A. Morales, T Lopez, R. Gomez, “Crystalline Structure of MgO Prepared by the Sol-Gel Technique with Different Hydrolysis Catalysts”, J. Solid State Chem. Vol. 115, pp. 411-415 (1995).
    [44] Z.W. Pan, F.C.K. Au, H.L. Lai, W.Y. Zhou, L.F. Sun, Z.Q. Liu, D.S. Tang, C.S. Lee, S.T. Lee, S.S. Xie, “Very Low-Field Emission from Aligned and Opened Carbon Nanotube Arrays”, J. Phys. Chem. B, Vol. 105, pp. 1519-1522 (2001).
    [45] Y. Tong, C. Liu, P.X. Hou, H.M. Cheng, N.S. Xu, J. Chen, “Field emission from aligned multi-walled carbon nanotubes”, Physica B, Vol. 323, pp. 156-157 (2002).
    [46] R. Saito, G. Dresselhaus, M.S. Dresselhaus, “Physical Properties of Carbon Nanotubes”,1998.
    [47]成會明、張勁燕,“奈米碳管”,五南出版社,2004年1月。
    [48]詹立雄,“奈米碳管的模板應用與摻雜元素對結構與場發射性質之研究”,清華大學材料科學與工程所博士論文,2003年9月。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE