簡易檢索 / 詳目顯示

研究生: 陳安倩
Tan, Ann Chen
論文名稱: Synthesis and Characterization of Photo-responsive Rotaxanes with Biferrocenyl-containing Axle
合成與分析:含雙二茂鐵之光反應超分子Rotaxane
指導教授: 堀江正樹
Horie, Masaki
口試委員: 蘇安仲
Su, An Chung
游進陽
Yu, Chin Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
中文關鍵詞: 超分子單晶繞射再結晶
外文關鍵詞: supermolecule, biferrocene
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A series of new [2]pseudorotaxanes “[2FcDB24C8](PF6) and [2FcDB24C8](PF6) (X = Br or I)”, composed of dibenzo[24]crown-8 ether (DB24C8) or tetrahalide substituted DB24C8 (DB24C8-X4) as a ring molecule have been synthesized. Being more comprehensible, these pseudorotaxanes are named 1, 2 and 3. The synthesis of biferrocene-containing axle molecule was carried out by the following steps. Ferroceneboronic acid served as a starting material. This was converted to iodoferrocene by addition of N-iodosuccinimide followed by Ullmann coupling to produce biferrocene. In between, different reaction conditions were attempted. Hence, optimization of reaction is reported in Chapter 2.3. The resulting products were identified by 1H NMR spectroscopy (500 MHz, CDCl3, r.t.) in every step. In the analysis section, we examined the response of the new [2FcDB24C8](PF6) crystals to laser irradiation at 445 nm, which intensity was comparable to the previously reported crystals of mono-ferrocene-containing [2]pseudorotaxane, [FcDB24C8](PF6) or pseudorotaxane 4. We have foreseen a rapid and reversible deformation of the crystals, as observed under optical microscope. From the X-ray single crystallography, we then studied the molecular interaction within the crystal and justified that it was due to the intra- and the intermolecular - interactions. Optical anisotropy, in particular thermal phase transition of the single crystals of the pseudorotaxane, was analyzed by polarizing optical microscopy (POM) with a Berek compensator. Furthermore, phase transition of the three types of crystals in respond to thermal stimuli was observed from POM images, differential scanning calorimetry (DSC), and X-ray crystallography.


    Acknowledgement I Abstract II Table of Contents III List of Figures V List of Tables X Chapter 1 Introduction and Aim 11 1.1 Introduction to Supramolecular Chemistry 11 1.2 Supramolecular Chemistry: Interlocked Molecular Architectures 14 1.3 Application of Supramolecular Chemistry 18 1.4 Solid-state Crystalline Machines at Molecular Level 29 1.5 Molecular Motion of Single Crystals Induced by Stimuli 32 1.6 Aim of Work 38 Chapter 2 Synthesis of Pseudorotaxanes Composed of Crown Ether Ring & Biferrocenyl Axle Molecule 40 2.1 Introduction to Ferrocenyl Pseudorotaxane 40 2.2 Schematic of Pseudorotaxane Synthesis 44 2.3 Optimization of Synthesis Reactions 49 2.3.1 Optimization of Biferrocene Synthesis 49 2.3.2 Optimization of Biferrocene-carboxaldehyde Synthesis 52 Chapter 3 Characterization and Analysis of Photo-responsive Pseudorotaxane Single Crystals Composing Biferrocenyl-containing Axle with Different Crown Ether Rings 57 3.1 Introduction 57 3.2 X-ray Crystallography of Crystals 59 3.2.1 Analogy of crystallographic data among crystals 59 3.2.2 Miller indices of crystals 62 3.2.3 Intra-molecular and inter molecular interaction of crystals 65 3.3 Thermal Analysis of Biferrocenyl-axle Pseudorotaxanes 69 3.4 Photo-responsive Pseudorotaxane Crystals 75 Chapter 4 Conclusion and Future Work 79 Chapter 5 Experimental Section 80 5.1 General Methods 80 5.2 Optical Measurement for Laser Irradiation and Thermal Phase Transition 81 5.3 Preparation of Iodoferrocene 83 5.4 Preparation of Biferrocene 84 5.5 Preparation of Biferrocene-carboxaldehyde 85 5.6 Preparation of p-xylyl(biferrocenylmethyl)ammonium hexafluorophosphate, [2Fc-H]+(PF6)- 88 5.7 Preparation of [2]pseudorotaxane: [2Fc·DB24C8](PF6), [2Fc·DB24C8-Br4](PF6) & [2Fc·DB24C8- I4](PF6) 91 Appendix 95 Crystallographic data of [2FcDB24C8](PF6) 95 Crystallographic data of [2FcDB24C8](PF6) after heated to phase transition 104 Crystallographic data of [2FcDB24C8-Br4](PF6) 111 References 120

    (1) Wolf, K. L.; Frahm, H.; Harms, H. Z. Phys. Chem. B 1937, 36, 237.
    (2) Lehn, J. M. Supramolecular Chemistry; VCH Verlagsgesellschaft mbH: Bundesrepublik Deutschland, 1995.
    (3) Beer, P. D.; Gale, P. A.; Smith, D. K. Supramolecular Chemistry; Oxford University Press: Great Britain, 1999.
    (4) Fischer, E. Ber. Dtsch. Chem. Ges. 1894, 27, 2985. (5) Desiraju, G. R. Nature 2000, 408, 407.
    (6) Kumar, D.; Sharma, D.; Singh, G.; Singh, M.; Rathore, M. S. ISRN Pharmaceutics 2012, 2012, 14.
    (7) Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89.
    (8) Wolf, K. L.; Wolff, R. Angew. Chem. 1949, 61, 191.
    (9) Anslyn, E. V. J. Org. Chem. 2007, 72, 687.
    (10) Kawakami, K.; Ebara, M.; Izawa, H.; M. Sanchez-Ballester, N.; P. Hill, J.; Ariga, K. Curr. Med. Chem. 2012, 19, 2388.
    (11) Wasserman, E. J. Am. Chem. Soc. 1960, 82, 4433.
    (12) Cesario, M.; Dietrich-Buchecker, C. O.; Guilhem, J.; Pascard, C.; Sauvage, J. P. J. Chem. Soc., Chem. Commun. 1985, 244.
    (13) Hubin, T. J.; Busch, D. H. Coord. Chem. Rev. 2000, 200, 5.
    (14) Abendroth, J. M.; Bushuyev, O. S.; Weiss, P. S.; Barrett, C. J. ACS Nano 2015, 9, 7746.
    (15) Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave, G. W. V.; Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308.
    (16) Chang, T.; Heiss, A. M.; Cantrill, S. J.; Fyfe, M. C. T.; Pease, A. R.; Rowan, S. J.; Stoddart, J. F.; Williams, D. J. Org. Lett. 2000, 2, 2943.
    (17) Schill, G.; Lüttringhaus, A. Angew. Chem. Int. Ed. Engl. 1964, 3, 546.
    (18) Sauvage, J.-P. Acc. Chem. Res. 1998, 31, 611.
    (19) Amabilino, D. B.; Ashton, P. R.; Pérez-García, L.; Stoddart, J. F. Angew. Chem. Int. Ed. Engl. 1995, 34, 2378.
    (20) Fujita, M.; Ibukuro, F.; Hagihara, H.; Ogura, K. Nature 1994, 367, 720.
    (21) Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi, M. Acc. Chem. Res. 2001, 34, 445.
    (22) Li, Q.; Fuks, G.; Moulin, E.; Maaloum, M.; Rawiso, M.; Kulic, I.; Foy, J. T.; Giuseppone, N. Nat Nano 2015, 10, 161.
    (23) Greb, L.; Lehn, J.-M. J. Am. Chem. Soc. 2014, 136, 13114.
    (24) Muraoka, T.; Kinbara, K.; Kobayashi, Y.; Aida, T. J. Am. Chem. Soc. 2003, 125, 5612.
    (25) Abel, E. W.; Long, N. J.; Orrell, K. G.; Osborne, A. G.; Šik, V. J. Organomet. Chem. 1991, 403, 195.
    (26) Ashton, P. R.; Ballardini, R.; Balzani, V.; Baxter, I.; Credi, A.; Fyfe, M. C. T.; Gandolfi, M. T.; Gómez-López, M.; Martínez-Díaz, M. V.; Piersanti, A.; Spencer, N.; Stoddart, J. F.; Venturi, M.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1998, 120, 11932.
    (27) Ashton, P. R.; Ballardini, R.; Balzani, V.; Credi, A.; Dress, K. R.; Ishow, E.; Kleverlaan, C. J.; Kocian, O.; Preece, J. A.; Spencer, N.; Stoddart, J. F.; Venturi, M.; Wenger, S. Chem. Eur. J. 2000, 6, 3558.
    (28) Ishow, E.; Credi, A.; Balzani, V.; Spadola, F.; Mandolini, L. Chem. Eur. J. 1999, 5, 984.
    (29) Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W. M.; Broer, D. J.; Feringa, B. L. Nature 2006, 440, 163.
    (30) Anelli, P. L.; Spencer, N.; Stoddart, J. F. J. Am. Chem. Soc. 1991, 113, 5131.
    (31) Chen, C. W.; Whitlock, H. W. J. Am. Chem. Soc. 1978, 100, 4921.
    (32) Zimmerman, S. C.; VanZyl, C. M. J. Am. Chem. Soc. 1987, 109, 7894.
    (33) Klärner, F.-G.; Kahlert, B. Acc. Chem. Res. 2003, 36, 919.
    (34) Petitjean, A.; Khoury, R. G.; Kyritsakas, N.; Lehn, J.-M. J. Am. Chem. Soc. 2004, 126, 6637.
    (35) Gawley, R. E.; Mao, H.; Haque, M. M.; Thorne, J. B.; Pharr, J. S. J. Org. Chem. 2007, 72, 2187.
    (36) Rogers, C. W.; Wolf, M. O. Coord. Chem. Rev. 2002, 233–234, 341.
    (37) Garcia-Garibay, M. A. Proc Natl Acad Sci U S A 2005, 102, 10771.
    (38) Khuong, T.-A. V.; Nuñez, J. E.; Godinez, C. E.; Garcia-Garibay, M. A. Acc. Chem. Res. 2006, 39, 413.
    (39) Vukotic, V. N.; Harris, K. J.; Zhu, K.; Schurko, R. W.; Loeb, S. J. Nat. Chem. 2012, 4, 456.
    (40) Nath, N. K.; Panda, M. K.; Sahoo, S. C.; Naumov, P. CrystEngComm 2014, 16, 1850.
    (41) Etter, M. C.; Siedle, A. R. J. Am. Chem. Soc. 1983, 105, 641.
    (42) Sahoo, S. C.; Sinha, S. B.; Kiran, M. S. R. N.; Ramamurty, U.; Dericioglu, A. F.; Reddy, C. M.; Naumov, P. J. Am. Chem. Soc. 2013, 135, 13843.
    (43) Gigg, J.; Gigg, R.; Payne, S.; Conant, R. J. Chem. Soc., Perkin Trans. 1 1987, 423.
    (44) Steiner, T.; Hinrichs, W.; Saenger, W.; Gigg, R. Acta Crystallogr., Sect. B 1993, 49, 708.
    (45) Zamir, S.; Bernstein, J.; Greenwood, D. J. Mol. Cryst. Liq. Crys. A 1994, 242, 193.
    (46) Skoko, Ž.; Zamir, S.; Naumov, P.; Bernstein, J. J. Am. Chem. Soc. 2010, 132, 14191.
    (47) Koshima, H.; Takechi, K.; Uchimoto, H.; Shiro, M.; Hashizume, D. Chem. Commun. 2011, 47, 11423.
    (48) Koshima, H.; Nakaya, H.; Uchimoto, H.; Ojima, N. Chem. Lett. 2012, 41, 107.
    (49) Horie, M.; Sassa, T.; Hashizume, D.; Suzaki, Y.; Osakada, K.; Wada, T. Angew. Chem. Int. Ed. Engl. 2007, 46, 4983.
    (50) Horie, M.; Suzaki, Y.; Hashizume, D.; Abe, T.; Wu, T.; Sassa, T.; Hosokai, T.; Osakada, K. J. Am. Chem. Soc. 2012, 134, 17932.
    (51) Horie, M.; Suzaki, Y.; Osakada, K. Inorg. Chem. 2005, 44, 5844.
    (52) Tsai, Y.-C., National Tsing Hua University, 2013.
    (53) Yu, Y.; Nakano, M.; Ikeda, T. Nature 2003, 425, 145.
    (54) Kobatake, S.; Takami, S.; Muto, H.; Ishikawa, T.; Irie, M. Nature 2007, 446, 778.
    (55) Morimoto, M.; Irie, M. J. Am. Chem. Soc. 2010, 132, 14172.
    (56) Terao, F.; Morimoto, M.; Irie, M. Angew. Chem. Int. Ed. Engl. 2012, 51, 901.
    (57) S. Kamounah, F.; B. Christensen, J. J. Chem. Res., Synop. 1997, 150.
    (58) Rausch, M. D. J. Am. Chem. Soc. 1960, 82, 2080.
    (59) Rausch, M. D. J. Org. Chem. 1961, 26, 1802.
    (60) Vilsmeier, A.; Haack, A. Ber. Dtsch. Chem. Ges. 1927, 60, 119.
    (61) Cheng, F.; Zhang, Y.; Yin, R.; Yu, Y. Journal of Materials Chemistry 2010, 20, 4888.
    (62) Uchida, E.; Azumi, R.; Norikane, Y. Nat Commun 2015, 6.
    (63) Hugel, T.; Holland, N. B.; Cattani, A.; Moroder, L.; Seitz, M.; Gaub, H. E. Science 2002, 296, 1103.
    (64) Kundys, B.; Viret, M.; Colson, D.; Kundys, D. O. Nat Mater 2010, 9, 803.
    (65) Michal, B. T.; McKenzie, B. M.; Felder, S. E.; Rowan, S. J. Macromolecules 2015, 48, 3239.
    (66) Bobrovsky, A.; Shibaev, V.; Bubnov, A.; Hamplová, V.; Kašpar, M.; Glogarová, M. Macromolecules 2013, 46, 4276.
    (67) Priimagi, A.; Shimamura, A.; Kondo, M.; Hiraoka, T.; Kubo, S.; Mamiya, J.-I.; Kinoshita, M.; Ikeda, T.; Shishido, A. ACS Macro Letters 2012, 1, 96.
    (68) Eremin, A.; Hirankittiwong, P.; Chattham, N.; Nádasi, H.; Stannarius, R.; Limtrakul, J.; Haba, O.; Yonetake, K.; Takezoe, H. Proceedings of the National Academy of Sciences 2015, 112, 1716.
    (69) Shimamura, A.; Priimagi, A.; Mamiya, J.-i.; Ikeda, T.; Yu, Y.; Barrett, C. J.; Shishido, A. ACS Applied Materials & Interfaces 2011, 3, 4190.
    (70) Qin, C.; Feng, Y.; Luo, W.; Cao, C.; Hu, W.; Feng, W. Journal of Materials Chemistry A 2015, 3, 16453.
    (71) Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X.-J.; Xie, R.; Chu, L.-Y. Advanced Functional Materials 2015, 25, 2980.
    (72) Yamaguchi, H.; Kobayashi, Y.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Harada, A. Nat Commun 2012, 3, 603.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE