研究生: |
賴宇倫 Lai,Yu-Lun |
---|---|
論文名稱: |
微孔金屬磷酸鹽/亞磷酸鹽與氟化物之合成、結構鑑定與性質研究 Synthesis, Characterization and Property of Microporous Metal Phosphates/Phosphites and Fluorides |
指導教授: |
王素蘭
Wang,Sue-Lein |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 361 |
中文關鍵詞: | 微孔材料 、金屬磷酸鹽 、金屬亞磷酸鹽 |
外文關鍵詞: | microporous materials, metal phsphates, metal phosphites |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用有機胺為模版在中溫中壓水熱反應中合成出55個新穎的化合物,皆以單晶X光繞射解析結構,再進行物理及化學性質的測量。且依照化合物的中心金屬將其之區分成兩個系列:
第一系列著重在含鈾的化合物,包含六價 (A1 ~ A13)、四價鈾磷酸鹽 (A14 ~ A28) 與四價鈾氟化物 (A29 ~ A34),針對包括零維團簇、一維無限鏈、二維層狀,與具雙金屬的三維開放式骨架的結構維度進行討論,而伴隨著結構出現的不同連結性,將可幫助瞭解鈾的結構化學與反應參數之間的關連。其中,具有新穎結構型態的有機模版四價鈾磷酸鹽 (A14 ~ A28) 更是未曾被報導過,除了隨著溫度下降呈現強烈的反鐵磁作用力之外,也發現其氧化性的化學穩定度是跟結構維度相關,而氧化實驗的結果也暗示著氟化程度較少的四價鈾離子在磷酸鹽晶格內將會相對穩定。最後針對A14、A20、A24與A29 ~ A34與已報導的四價鈾氟化物的結構特徵,歸納出可預測結構維度的規律。
第二系列包含具有超大微孔洞26員環的鋁鋅亞磷酸鹽,將之命名成NTHU-5,這是使用正丁胺CH3CH2CH2CH2NH2為有機模版,利用HF在 C2H5OH與H2O的混合溶劑中,結合不同氧化態的Zn2+與Al3+所得到的化合物。在不破壞結構型態的情況下,其三價金屬中心Al3+可被完全置換成Ga3+或Fe3+,使之由逆磁性轉變成具反鐵磁的物質。也可對結構進行過渡金屬的部分摻雜,例如Co2+、V3+或Cr3+可分別被摻雜進Zn2+、Al3+或Ga3+中心,令人驚奇的是最多可同時將四種金屬Al3+、Cr3+、Zn2+與Co2+嵌入結構,並清楚地鑑定出其位置與含量。而使用較短的異丁胺 (CH3)2CH2CH2NH2為有機模版,也能製造出NTHU-5的骨架。此系列的成功開發,不僅將超大孔洞的員環數突破至26員環,其產物的高產率與骨架金屬的可置換性,在已知的系統中都是極為特殊的現象。
在附錄B整理鋅 (B1和 B2)、鎵 (B3 ~ B6)、釩鎵 (B7和 B8) 磷酸鹽與鈾鍺酸鹽 (B9 ~ B11) 的合成條件與結構資料。這些資料將對後續的研究有所貢獻或有助於開發新物質。
In this research, 55 novel compounds have been synthesized by the using of organic amines as templates via the mild hydrothermal method. These compounds were all characterized by single crystal X-ray diffraction and measured physical and chemical properties. The compounds are divided into two series based on metal centers:
The first series focus on uranium contained compounds including hexavalent uranium phosphates (A1 to A13), tetravalent uranium phosphates (A14 to A28) and fluorides (A29 to A34). Structural dimensionality from 0D cluster, 1D infinite chain, 2D layer and 3D bimetal open framework is discussed. Different connectivity in structure helps make clear the relationship between uranium structural chemistry and reaction variables. Moreover, organically templated uranium (IV) phosphates have never been reported not to mention one with novel structure like A14 to A28. They show strong antiferromagnetic interaction with decreasing temperature. It is worth mentioning that the chemical stability of these compounds with respect to oxidization is also dimensionality-dependent. The oxidation results also imply that the U4+ ions are more stable in the phosphate matrixes with the smaller extent of fluorination. A rule for predicting structural dimensionality can be concluded from the structure features in A14, A20, A24 and A29 to A34 and reported uranium (IV) fluorides.
The second series is comprised of an extra-large microporous 26R aluminum zincphosphite, namely NTHU-5. It’s synthesized with different valance state Zn2+ and Al3+, n-butylamine (CH3CH2CH2CH2NH2) as organic template and HF, in mixed solvent (C2H5OH and H2O). Without changing the structure, trivalent metal ion, Al3+ could be completely replaced by Ga3+ or Fe3+, rendering the material from diamagnetic to ferromegnatic. Transition metal ions, such as Co2+, V3+ or Cr3+can also be separately incorporated into Zn2+, Al3+ or Ga3+ center in structure. Surprisingly, four metal ions Al3+, Cr3+, Zn2+ and Co2+ can be simultaneously inserted into the framework. The metal-incorporated positions and amounts can be clearly characterized. The NTHU-5 framework can also be induced by shorter iso-butylamine ((CH3)2CH2CH2NH2). In this series, the NTHU-5 makes breakthrough in extra-large pore size reaching 26R channel along with high product yield and various substitution of metals in framework which are rarely observed in existing system.
The synthesis of zinc- (B1 and B2), gallium- (B3 to B6), vanadium gallo- phosphates (B7 and B8) and uranium germinates (B9 to B11) and their structures were categorized in appendix B. The synthesis conditions and structure information of these compounds make contribution to further research, and also be beneficial to development of novel materials in the future.
1-5 參考文獻
[1] Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146.
[2] Davis, M. E. Nature 2002, 417, 813.
[3] Yang, G. Y.; Sevov, S. C. J. Am. Chem. Soc. 1999, 121, 8389.
[4] Moore, P. B.; Shen, J. Nature 1983, 306, 356.
[5] Davis, M. E.; Saldarriaga; Montes, C.; Garces, J.; Crowder, C. Nature 1988, 331, 698.
[6] Estermann, M.; McKusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature 1991, 352, 320.
[7] Huo, Q.; Xu, R.; Li, S.; Ma, Z.; Thomas, J. M.; Jones, R. H.; Chippindale, A. M.
J. Chem. Soc. Chem. Commun. 1992, 875.
[8] Zhou, Y.; Zhu, H.; Chen, Z.; Chen, M.; Xu, Y.; Zhang, H.; Zhao, D.
Angew. Chem. Int. Ed. 2001, 40, 2166.
[9] Liang, J.; Li, J.; Yu, J.; Chen, P.; Fang, Q.; Sun, F.; Xu, R. Angew. Chem. Int. Ed. 2006, 45, 2546.
[10] Yang, Y.; Li, N.; Song, H.; Wang, H.; Chen, W.; Xiang, S. Chem. Mater. 2007, 19,
1889.
[11] Zhao, L.; Li, J.Y.; Cheri, P.; Xu, R. Chem. Mater. 2008, 20, 17.
[12] Doran, M. B.; Norquist, A. J.; O’Hare, D. Chem. Commun. 2002, 2946.
[13] Bull, I.; Wheatley, P. S.; Lightfoot, P.; Morris, R. E.; Sastre, E.; Wright, P. A. Chem. Commun. 2002, 1180.
[14] Altrecht-Schmitt, T. E. Angew. Chem. Int. Ed. 2005, 44, 4836.
[15] Zhou, Y.; Zhu, H.; Chen, Z.; Chen, M.; Xu, Y.; Zhang, H.; Zhao, D.
Angew. Chem. Int. Ed. 2001, 40, 2166.
[16] Plevert, J.; Gentz, T. M.; Laine, A.; Li, H.; Young, V. G.; Yaghi, O. M.; O’Keeffe, M. J. Am. Chem. Soc. 2001, 123, 12706.
[17] Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M.S.; O’Keeffe, M. Nature 2005, 437, 716.
[18] (a) Balkus Jr., K.J.; Gabrielov, A.G.; Zones, S.I.; Chan, I.Y.; Preprints, Petr. 1995, 40, 296. (b) Wessels, T.; Baerlocher, C.; McCusker, L. B.; Creyghton, E. J. J. Am. Chem. Soc. 1999, 121, 6242.
[19] Burton, A.; Elomari, S.; Chen, C. Y.; Ronald, C. M.; Chan, I. Y.; Bull, L. M.; Kibby, C.; Harris, T. V.; Zones, S. I.; Vittoratos, E. S. Chem. Eur. J. 2003, 9, 5737.
[20] Strohmaier, K. G.; Vaughan, D. E. W., J. Am. Chem. Soc. 2003, 125, 16035
[21] Wang, M. S.; Guo, G. C.; Chen,W. T.; Xu, G.; Zhou,W. W.; Wu, K. J.; Huang, J. S. Angew. Chem., Int. Ed. 2007, 46, 1.
[22] Boy, I.; Stowasser, F.; Schafer, G.; Kniep, R. Chem. Eur. J. 2001, 7, 834.
[23] Zhu, J.; Bu, X.; Feng, P.; Stucky, G. D. J. Am. Chem. Soc. 2000, 122, 11563.
[24] Halasyamani, P. S.; Walker, S. M.; O’Hare, D. J. Am. Chem. Soc. 1999, 121, 7415.
[25] Eddaodi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
[26] Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
[27] Wang, B.; Cote, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Nature 2008, 453, 207.
[28] Murugavel, R.; Choudhury, A.; Walawalkar, M.; Pothiraja, G. R.; Rao, C. N. R. Chem. Rev. 2008, 108, 3549 and reference therein.
[29] Lin, C. H.; Wang, S. L.; Lii, K. H. J. Am. Chem. Soc. 2001, 123, 4649.
[30] Yang, Y. C.; Wang, S. L. J. Am. Chem. Soc. 2008, 130, 1146.
[31] Tang, M. F.; Chiang, P. Y.; Yeh, H. C.; Lii, K. H. Dalton. Trans. 2007, 4523 and reference therein.
[32] Liao, Y. C.; Liao, F. L.; Chang, W. K.; Wang, S. L. J. Am. Chem. Soc. 2004, 126, 1320.
[33] Liao, Y. C.; Jiang, Y. C.; Wang, S. L. J. Am. Chem. Soc. 2005, 127, 12794.
[34] Liao, Y. C.; Lin, C. H.; Wang, S. L. J. Am. Chem. Soc. 2005, 127, 9986.
[35] Rabenau, A. Angew. Chem., Int. Ed. 1985, 24, 1026.
[36] 王素蘭,科儀新知,民國九十四年二月第二十六卷第四期
[37] APEX II software package; Bruker AXS, Madison, WI, 2005.
[38] Sheldrick, G. M. SAINT programs, Release Version 5.1; Bruker AXS, Madison, WI, 1998.
[39] Sheldrick, G. M. SHELXTL programs, Release Version 5.1; Bruker AXS, Madison, WI, 1998.
[40] Brown, I. D.; Altermann, D. Acta Crystallogr. 1985, B41, 244.
[41] Spek, L. Acta Crystallogr. 1990, A46, 34.
[42] Selwood, P. W. Magnetochemistry; Interscience : New York, 1956.
2-5 參考文獻
[1] (a) Kim, J. Y.; Norquist, A. J.; O’Hare D. J. Am. Chem. Soc. 2003, 125, 12688.
(b) Ok, K. M.; Sung, J.; Hu, G.; Jocbs, R. M. J.; O’Hare D. J. Am. Chem. Soc. 2008, 130, 3762.
[2] (a) Burns, P. C.; Olson, R. A.; Finch, R. J.; Hanchar, J. M.; Thibault, Y. J. Nucl. Mater. 2000, 278, 290. (b) Jackson, J. M.; Burns, P. C. Can. Mineral. 2001, 39, 187.
[3] Hutchings, G. J.; Heneghan, C. S.; Hudson, I. D.; Taylor, S. H. Nature 1996, 384, 341.
[4] Poojary, D. M.; Grohol, D.; Clearfield, A. Angew. Chem. Int. Ed. 1995, 34, 1508.
[5] Grohol, D.; Blinn, E. L. Inorg. Chem. 1997, 36, 3422.
[6] Burns, P.C.; Miller, M.L.; Ewing, R.C. Can. Mineral. 1996, 34, 845.
[7] Zhou, P.; Gu, B. H. Environ. Sci. Technol. 2005, 39, 4435.
[8] Silva, R. J.; Nitsche, H. Radiochim. Acta 1995, 70, 377.
[9] Francis, R. J.; Drewitt, M. J.; Halasyamani, P. S.; Ranganathachar, C.; O’Hare, D.; Clegg, W.; Teat, S. J. Chem. Commun. 1998, 279.
[10] Danis, J. A.; Runde, W. H.; Scott, B.; Fettinger, J.; Eichhorn, B. Chem. Commun. 2001, 2378.
[11] Doran, M. B.; Stuart, C. L.; Norquist, A. J.; O’Hare, D. Chem. Mater. 2004, 16, 565.
[12] Locock, A. J.; Burns, P. C. J. Solid State Chem. 2004, 177, 2675.
[13] Ok, K. M.; Doran, M. B.; O’Hare, D. Dalton Trans. 2007, 30, 3325.
[14] Yu, Y.; Zhan, W.; Albrecht-Schmitt, T. E. Inorg. Chem. 2007, 46, 10214.
[15] Yu, Y.; Zhan, W.; Albrecht-Schmitt, T. E. Inorg. Chem. 2008, 47, 9050.
[16] Bray, T. H.; Gorden, J. D.; Albrecht-Schmitt, T. E. J. Solid State Chem. 2008, 181, 2199.
[17] (a) Francis, R. J.; Halasyamani, P. S.; O’Hare, D. Chem. Mater. 1998, 10, 3131.
(b) Francis, R. J.; Halasyamani, P. S.; O’Hare, D. Angew. Chem. Int. Ed. 1998, 37, 2214.
[18] Francis, R. J.; Halasyamani, P. S.; Bee, J. S.; O’Hare, D. J. Am. Chem. Soc. 1999, 121, 1609.
[19] Walker, S. M.; Halasyamani, P. S.; Allen, S.; O’Hare, D. J. Am. Chem.Soc. 1999, 121, 10513.
[20] Halasyamani, P. S.; Walker, S. M.; O’Hare, D. J. Am. Chem. Soc. 1999, 121, 7415.
[21] Almond, P. M.; Deakin, L.; Porter, M. J.; Mar, A.; Albrecht-Schmitt, T. E. Chem. Mater. 2000, 12, 3208.
[22] Talley, C. E.; Bean, A. C.; Albrecht-Schmitt, T. E. Inorg. Chem. 2000, 39, 5174. [23] Allen, S.; Barlow, S.; Halasyamani, P. S.; Mosselmans, J. F. W.; O’Hare, D.;
Walker, S. M.; Walton, R. I. Inorg. Chem. 2000, 39, 3791.
[24] Almond, P. M.; Talley, C. E.; Bean, A. C.; Peper, S. M.; Albrecht-Schmitt, T. E. J. Solid. State Chem. 2000, 154, 635.
[25] Almond, P. M.; Deakin, L.; Mar, A.; Albrecht-Schmitt, T. E. Inorg. Chem. 2001, 40, 886.
[26] Cahill, C. L.; Burns, P. C. Inorg. Chem. 2001, 40, 1347.
[27] Almond, P. M.; Deakin, L.; Mar, A.; Albrecht-Schmitt, T. E. J. Solid. State Chem. 2001, 158, 87.
[28] Wang, C. M.; Liao, C. H.; Lin, H. M.; Lii, K. H. Inorg. Chem. 2004, 43, 8239.
[29] Wang, C. M.; Liao, C. H.; Kao, H. M.; Lii, K. H. Inorg. Chem. 2005, 44, 6294.
[30] Wang, C. M.; Wu, Y. Y.,Chen, P. L. Lii, K. H. Dalton. Trans. 2007, 1034.
[31] Ok, K. M.; O’Hare, D. J. Solid State Chem. 2007, 180, 446.
[32] Mereite, K. Tschermaks Mineral. Petrogr. Mitt. 1982, 30, 49.
[33] Ok, K. M.; Baek, J.; Halasyamani, P. S.; O’Hare, D. Inorg. Chem. 2006, 45, 10207.
[34] Chang, W. J.; Jiang, Y. C.; Wang, S. L.; Lii, K. W. J. Solid State Chem. 2006, 179, 3059.
[35] Mercier, R.; Pham-Thi, M.; Colomban, P. Solid State Ion. 1985, 15, 113.
[36] Burns, P. C. Am. Mineral. 2000, 85, 801.
[37] Jackson, J. M.; Burns, P. C. Can. Mineral. 2001, 39, 187.
[38] Shvareva, T. Y.; Sullens, T. A.; Shehee, T. C.; Albrecht-Schmitt, T. E. Inorg. Chem. 2005, 44, 300.
[39] Brandel, V.; Dacheux, N. J. Solid State Chem. 2004, 177, 4743 and references cited therein.
[40] Kern, S.; Hayward, J.; Roberts, S.; Richardson, J. W .jr.; Rotella, F. J.; Soderholm, L.; Cort, B.; Tinkle, M.; West, M.; Hoisington, D.; Lander, G. H. J. Phys.Chem. 1994, 101, 9333.
[41] Brunton, G. Acta Crystallogr. 1969, B25, 1919.
[42] Penneman, R.A.; Ryan, R.R. Acta Crystallogr. 1974, B30, 1966.
[43] Brunton, G. Acta Crystallogr. 1969, B25, 2163.
[44] Rosenzweig, A.Cromer, D.T. Acta Crystallogr. 1970, B26, 38.
[1] Cheetham, A. K.; Ferey, G.; Loiseau, T. Angew. Chem. Int. Ed. 1999, 38, 3268.
[2] Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem. Int. Ed. 2005, 45, 4670.
[3] Murugavel, R.; Walawalkar, D. M.; Roesky, H. W.; Rao, C. N. R. Acc. Chem. Res. 2004, 42, 409.
[4] (a) Yang, Y. C.; Wang, S. L. J. Am. Chem. Soc. 2008, 130, 1146. (b) Liao, Y. C.; Lin, C. H.; Wang, S. L. J. Am. Chem. Soc. 2005, 127, 9986.
[5] Shieh, M. K.; Martin, J.; Squattrito, P. J.; Clearfield, A. Inorg. Chem. 1990, 29, 958.
[6] Bonavia, G.; DeBord, J.; Haushalter, R. C.; Rose, D.; Zubieta, J. Chem. Mater. 1995, 7, 1995.
[7] Rodgers, J. A.; Harrison, W. T. A. Chem. Commun. 2000, 2385.
[8] (a) Lu A.; Song, H.; Li, N.; Xiang, S.; Guan, N.; Wang, H. Chem. Mater. 2007, 19, 4142. (b) Wang, L.; Song, T.; Fan, Y.; Wang, Y.; Xu, J.; Shi, S.; Zhu. T. J. Solid State Chem. 2006, 179, 824. (c) Wang, L.; Song, T.; Xu, J.; Wang, Y.; Tian, Z.; Shi, S. Microporous Mesoporous Mater.2006, 96, 287. (d) Mandal, S.; Natarajan, S. Inorg. Chem. 2008, 47, 5304 and references therein.
[9] Liang, J.; Li, J.; Yu, J.; Chen, P.; Fang, Q.; Sun, F.; Xu, R. Angew. Chem. Int. Ed. 2006, 45, 2546.
[10] Yang, Y.; Li, N.; Song, H.; Wang, H.; Chen, W.; Xiang, S. Chem. Mater. 2007, 19, 1889.
[11] Guillou, N.; Gao, Q.; Nogues, M.; Morris, R. E.; Hervieu, M.; Ferey, G.; Cheetham, A. K. C. R. Acad. Sci., Ser. IIC: Chim. 1999, 2, 387.
[12] Guillou, N.; Gao, Q.; Forster, P. M.; Chang, J. S.; Nogues, M.; Park, S. E.; Ferey, G.; Cheetham. A. K. Angew. Chem. Int. Ed. 2001, 40, 2831.
[13] Yang, G. Y.; Sevov, S. C. J. Am. Chem. Soc. 1999, 121, 8389.
[14] Lin, C. H.; Wang, S. L.; Lii, K. H. J. Am. Chem. Soc. 2001, 123, 4649.
[15] Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature 1991, 352, 320.
[16] Huo, Q.; Xu, R.; Li, S.; Ma, Z.; Thomas, J. M.; Jones, R. H.; Chippindale, A. M. J. Chem. Soc. Chem. Commun. 1992, 875.
[17] Zhu, J.; Bu, X.; Feng, P.; Stucky, G. D. J. Am. Chem. Soc. 2000, 122, 11563.
[18] Moore, P. B.; Shen, J. Nature 1983, 306, 356.
[19] Sassoy, C.; Marrat, J.; Loiseau, T.; Ferey, G. Chem. Mater. 2002, 14, 1340.
[20] Sassoy, C.; Loiseau, T.; Taulelle, F.; Ferey, G. Chem. Commun. 2000, 943.
[21] (a) Zahedi-Niaki, M. H.; Xu, G.; Meyer, H.; Fyfe, C. A.; Kaliaguine, S. Microporous Mesoporous Mater. 1999, 32, 241. (b) Bujoli-Doeuff, M.; Evain, M.; Janvier, P.; Massiot, D.; Clearfield, A.; Gan, Z.; Bujoli, B. Inorg. Chem. 2001, 40, 6694.
[22] (a) Rodgers, J. A.; Harrison, W. T. A. Chem. Commun. 2000, 2385. (b) Harrison, W. T. A.; Phillips, M. L. F.; Nenoff, T. M. J. Chem. Soc., Dalton Trans. 2001, 2459.
[23] (a) Loiseau, T.; Taulelle, F.; Ferey, G. Microporous Mater. 1997, 9, 83.
(b) Loiseau, T.; Taulelle, F.; Ferey, G. Microporous Mater. 1996, 5, 365.
(c) Matijasic, A.; Gramlich, V.; Patarin, J. J. Mater. Chem. 2001, 11, 2553.
(d) Loiseau, T.; Paulet, C.; Simon, N.; Munch, V.; Taulelle, F.; Ferey, G. Chem. Mater. 2000, 12, 1393.
[24] (a) Lin, Z.; Zhang, J.; Zheng, S.; Yang, G.; J. Mater. Chem. 2004, 14, 1652.
(b) Pan, J.; Zheng, S.; Yang, G. Cryst. Growth Des. 2005, 5, 237. (c) Liang, J; Li, J.; Yu, J.; Li Li, P. C.; Xu, R. J. Solid State Chem. 2005, 178, 2673.
[25] Fernandez, S.; Mesa, J. L.; Pizarro, J. L.; Lezama, L. M.; Arriortua, I.; Olazcuaga, R.; Rojo, T. Chem. Mater. 2000, 12, 2092.
[26] (a) Wagner, P.; Yoshikawa, M.; Lovallo, M.; Tsuji, K.; Tsapatsis, M.; Davis, M. E. Chem. Commun. 1997, 2179. (b) Freyhardt, C. C.; Tsapatsis, M.; Lobo, R. F.; Balkus, K. J.; Davis, M. E. Nature 1996, 381, 295.
[27] Fernandez, S.; Mesa, J. L.; Pizarro, J. L.; Lezama, L.; Arriortua, M. I.; Rojo, T. Angew. Chem. Int. Ed. 2002, 41, 3683.
[28] Weckhuysen, B. M.; De Ridder, L. M.; Schoonheydt, R. A.; J. Phys.Chem. B 1993, 97, 4756.
[29] 莊于萱,金屬亞磷酸鹽的水熱合成、晶體結構與性質研究,第四章。
[30] Chang, W. J.; Chen, C. Y.; Lii, K. W. J. Solid State Chem. 2003, 172, 6.