簡易檢索 / 詳目顯示

研究生: 張孟翔
Chang, Meng-Hsieng
論文名稱: 由液晶溶液製作有均勻色的奈米纖維素薄膜可行性研究
Feasibility of making uniformly colored cellulose nanocrystal films from aqueous suspensions in a cholesteric liquid crystal phase
指導教授: 大江昌人
Masahito, Oh-e
口試委員: 潘犀靈
Pan, Ci-Ling
陳皇銘
Chen, Huang-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 37
中文關鍵詞: 奈米纖維素膽固醇液晶動能阻滯咖啡圈效應螺距
外文關鍵詞: cellulose nanocrystals, cholesteric liquid crystal, kinetic arrest, coffee ring effect, helical pitch
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了更進一步研究纖維素的光子特性並探索其光電應用,相關基礎研究室必須不可或缺的。已知納米纖維素 (CNC) 在水溶液中可表現出膽甾型液晶 (CLC)。我們從以下方面研究了納米纖維素在水溶液的一些物理性質:(1) 觀察納米纖維素水溶液在不同濃度下狀態 (2) 測量及控制螺距 (3) 觀察和控制納米纖維素的分子排列。
    納米纖維素在水溶液三種不同的濃度範圍對應了三種不同形態:均質相(低於 4 wt%)、雙相狀態(從 4 到 10 wt%)和完全液晶態(超過 10 wt%)。在雙相狀態下,指紋紋理是膽甾相的典型紋理,可以使用偏光顯微鏡觀察到。可以從指紋紋理中測量 2 到 11 µm 的螺距;然而,當指紋紋理的寬度較窄,當螺距小於2 µm時,使用偏光顯微鏡無法觀察到指紋紋理。此外,我們已觀察到納米纖維素水溶液的蒸發過程顯著影響 CNC 薄膜的虹彩。快速乾燥含有 CNC 的水溶液的液滴呈現出從液滴的邊緣的紅色到中心的藍色。這一觀察結果與典型的咖啡環效應相關。相比之下,緩慢蒸發對納米纖維素水溶液會導致從邊緣到液滴中心的顏色更均勻,其中液滴中水的毛細流動會減少,水會緩慢蒸發,我們可以通過濕度控制蒸發速率獲得大面積的藍色區域,這些觀察結果表明,在我們系統中CNC的結構色是由於熱力學穩定態的螺距顯著受到 CNC 水溶液中水蒸發速率的影響。通過我們的模型,我們假設由溶致液晶 (LC) 的蒸發速率引起的動能阻滯與由熱致液晶和其他材料的溫度變化率引起的動能阻滯相同。


    To advance cellulose photonics and explore its optoelectronic applications, fundamental research is intrinsically required. Cellulose nanocrystals (CNCs) in aqueous suspension are known to exhibit the cholesteric liquid crystal (CLC) phase. We investigate some physical properties of CNCs in aqueous suspension in term of (1) observing the dependence of the LC phase on the CNC concentration in aqueous suspension, (2) measuring and controlling the helical pitch, and (3) observing and controlling the alignment.
    Three different concentration ranges were identified: the isotropic phase (below 4 wt%), biphase regime (from 4 to 10 wt%), and fully liquid crystalline (beyond 10 wt%). In the biphase regime, fingerprint textures, which are a typical texture of a cholesteric phase, are observable using a polarizing microscope. The helical pitch from 2 to 11 µm can be measured from the fingerprint textures; however, when the width of the fingerprint textures is narrower, and thus the helical pitch is shorter than 2 µm, the fingerprint textures cannot be observed using a polarizing microscope. Further, the drying process of the aqueous suspensions has been observed to significantly influence the quality of the iridescence of the CNC films. Rapidly drying a droplet of the CNC-contained aqueous suspension exhibits rainbow colors from red to blue, which can be observed from the edge to the center of the droplet. This observation is correlated with a typical coffee-ring effect. By contrast, slowly drying a counterpart results in more uniform color from the edge to the center of the droplet, and a blue domain over a large area can be attained via humid-controlled drying, wherein capillary flow would be reduced and water gradually evaporates. These observations suggest that the thermodynamically stabilized helical pitch of CNCs, which determines the structural colors in our systems, is significantly influenced by the rate of water evaporation from the CNC aqueous suspensions. Through modeling, we hypothesize that kinetic arrest induced by the evaporation rate of lyotropic liquid crystals (LCs) would be equivalent to that induced by the rates of change in temperature for thermotropic LCs as well as other materials.

    摘要 Abstract Acknowledgements Contents List of Figures Chapter 1 Introduction-----------------------------------------------1 1.1 Background information:Why cellulose and cellulose nanocrystals? ---------------------------------------------------------------------1 1.2 Liquid crystals (LCs)--------------------------------------------2 1.3 Literature review------------------------------------------------2 1.3.1 Cellulose photonics--------------------------------------------2 1.3.2 LC lasers------------------------------------------------------4 1.4 Purpose of the study---------------------------------------------4 Chapter 2 Experiments and methods------------------------------------6 2.1 Materials and preparation----------------------------------------6 2.2 Equipment--------------------------------------------------------8 2.3 CNC sample preparation-------------------------------------------9 2.3.1 Sample bottle / Capillary tube cleaning------------------------9 2.3.2 CNC Sample making----------------------------------------------9 Chapter 3 Results and discussions-----------------------------------11 3.1 Preliminary study of CNC----------------------------------------11 3.1.1 Stirring time affect homogenous-------------------------------11 3.1.2 Ultrasonic bath-----------------------------------------------11 3.2 Phase separation------------------------------------------------13 3.2.1 Phase separation of CNC suspensions---------------------------13 3.2.2 Anisotropic and isotropic part after phase separation---------15 3.3 Helical pitch---------------------------------------------------16 3.3.1 Helical pitch for CNC suspensions-----------------------------16 3.3.2 Phase behavior of CNC suspensions as a function of the concentrations------------------------------------------------------17 3.3.3 Shortening helical pitch--------------------------------------18 3.4 Drying CNC droplets---------------------------------------------19 3.4.1 Coffee ring effect--------------------------------------------19 3.4.2 Temperature effect--------------------------------------------21 3.4.3 Humid drying CNC----------------------------------------------23 3.4.4 Air drying with orbital shear---------------------------------25 3.4.5 Humid drying with orbital shear-------------------------------27 3.4.6 Spectrum of combining effects of high humidity and orbital shear --------------------------------------------------------------------28 3.5 Model-----------------------------------------------------------31 Chapter 4 Conclusion------------------------------------------------33 References----------------------------------------------------------34

    [1] C. Somerville: ‘Cellulose synthesis in higher plant’. Annu Rev Cell Dev Biol, 2006, 22, pp. 53-78.
    [2] A. Tanimura, W. Liu, K. Yamada, H. Toyohara: ‘Animal cellulases with a focus on aquatic invertebrates’. Fisheries Science, 2012, 79(1), pp. 1-13.
    [3] E. Zanchetta, E. Damergi, B. Patel, T. Borgmeyer, H. Pick, A. Pulgarin, C. Ludwig: ‘Algal cellulose, production and potential use in plastics’. Algal Research, 2021, 56(42), 102288.
    [4] P. Baldrian & V. Valaskova: ‘Degradation of cellulose by basidiomycetous fungi’. FEMS Microbiol Rev 32, 2008, 32(3), pp. 501-21.
    [5] P. Gupta, K. Samant, A. Sahu: ‘Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential’. International Journal of Microbiology Volume, 2012, 5 pages
    [6] M. Garajová, M. Mrva1, N. Vaškovicová, M. Martinka, J. Melicherová, A. Valigurová: ‘Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for acanthamoeba cyst wall architecture’. Scientific Reports, 2019, 9, 4466.
    [7] A. Bhatnagar, M. Sain: ‘Processing of cellulose nanofiber-reinforced composites’. Journal of Reinforced Plastics And Composites, 2005, 24(12), pp. 1259-1268.
    [8] B. Soni, E.B.Hassana, B. Mahmoudb: ‘Chemical isolation and characterization of different cellulose nanofibers from cotton stalks’. Carbohydrate Polymers, 2015, 134(10), pp. 581-589
    [9] J.PF. Lagerwall, C. Schu¨tz, M. Salajkova, J. Noh, J-H. Park, G.Scalia, L. Bergstro¨m: ‘Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films’. Fisheries Science, 2013, 79(1), pp. 1-13
    [10] G. Williams: ‘Comprehensive polymer science and supplements’. Molecules, 1997, 2(10), pp. 601-632
    [11] J .W. Goodby: ‘Microscopy applications / liquid crystals’. Encyclopedia of Analytical Science
    [12] N. Lin, Y. Chen, F. Hu, J. Huang., “Mechanical reinforcement of cellulose nanocrystals on biodegradable microcellular foams with melt-compounding process,” Cellulose ,2015, 22(4), pp. 2629-2639
    [13] C. Xu, W. Chen, H. Gao, X. Xie, Y. Chen: ‘Cellulose nanocrystal/silver (CNC/Ag) thin-film nanocomposite nanofiltration membranes with multifunctional properties’. Environmental Science: Nano, 2020, 7, pp. 803-816.
    [14] C. Maiuolo, L. Algieri, V. Olivito, F. Tallarida, M.A. Costanzo, P. Jiritano, A. De Nino: ‘Chronicle of nanocelluloses (NCs) for catalytic applications: key advances’. Catalysts, 2021, 11(1), 96.
    [15]R. Nicu, F. Ciolacu, D-E.Ciolacu., “Advanced functional materials based on nanocellulose for pharmaceutical/medical applications’. NPG Asia Materials, 2014, 6(1), 80.
    [16] J.PF. Lagerwall1, C. Schu¨tz, M. Salajkova, J. Noh, J-H Park, G. Scalia, L. Bergstro¨m: ‘Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films’. NPG Asia Materials, 2014, 6(1), 80.
    [17] C. Zhu, A. F. Koutsomitopoulou, R. Nigmatullin, J. S. van Duijneveldt, R. M. Richardson: ‘High stiffness cellulose fibers from low molecular weight microcrystalline cellulose solutions using DMSO as co-solvent with ionic liquid’. Macromol. Mater. Eng, 2018, 303, 1800029
    [18] C. Maiuolo, L. Algieri, V. Olivito, F. Tallarida, M.A. Costanzo, P. Jiritano, A.De Nino, A. Chronicl: ‘Chronicle of nanocelluloses (NCs) for catalytic applications: key advances’. Catalysts, 2021, 11(8), 96.
    [19] K.W. Klockars, B. L. Tardy, M. Borghei, A. Tripathi, L. G. Greca, O. J. Rojas: ‘Effect of anisotropy of cellulose nanocrystal suspensions on stratification, domain structure formation, and structural colors’. Biomacromolecules, 2018, 19, pp. 2931−2943.
    [20] J.PF. Lagerwall1, C. Schu¨tz, M. Salajkova, J. Noh, J-H Park, G. Scalia, L. Bergstro¨m: ‘Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions’. ChemPhys, 2014, 15, pp. 1477-1484.
    [21] P. I. C. Claro, A. C. Marques, I. Cunha, R. F. P. Martins, L. M. N. Pereira, J.M. Marconcini, L. H. C. Mattoso, E. Fortunato: ‘Tuning the electrical properties of cellulose nanocrystals through laser-induced graphitization for UV photodetectors’. ACS Appl. Nano Mater, 2021, 4, pp. 8262−8272 [22] M. Li, X. Li, H.N Xiao, T.D. James: ‘Fluorescence sensing with cellulose‐based materials’. Chemistry Open. 2017, 6(6), pp. 685–696.
    [23] K. Dhali, M. Ghasemlou, F. Dave, P. Cass, B. Adhikari: ‘A review of nanocellulose as a new material towards environmental sustainability’. Science of the Total Environment ,2021, 775, 145871.
    [24] A.J. Bard, L. R. Faulkner: ‘Electrochemical MethodsFundamentals and applications, 2nd edition’. Applications of Conductometry, Electrogravimetry and Coulometry
    [25] E.W. Washburn: ‘The dynamics of capillary flok’. Second Series MGrck, 1921, 17, 273
    [26] S.M. Choi, E.J. Shin: ‘The nanofication and functionalization of bacterial cellulose and its applications’. Nanomaterials, 2020, 10(3), 406
    [27] U. Casado, V.L. Mucci, M.I. Aranguren: ‘Cellulose nanocrystals suspensions: liquid crystal anisotropy, rheology and films iridescence’. Carbohydrate Polymers, 2021, 261, 117848.
    [28] C.Honorato-Rios, Jan P. F. Lagerwal: ‘Interrogating helical nanorod self-assembly with fractionated cellulose nanocrystal suspensions’. Mcommunications materials, 2020, 1, 69.
    [29] Dr. R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius,
    Dr. S. Vignolini, Dr. B. Frka-Petesic: ‘The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance’. Adv. Mater, 2018, 30, 1704477.
    [30] Xiaoyue Mu, Derek G. Gray: ‘Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process’. JLangmuir, 2014, 30, pp. 9256−9260
    [31] S. G. Lukishova, A.W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R.W. Boyd, C. R. Stroud, JR: ‘Dye-doped cholesteric-liquid-crystal room-temperature single-photon source’. Journal of modern optics, 2004, 51(10), pp. 1535–1547
    [32] M.P. Motloung, S. Zungu, V. Ojij, J. Bandyopadhyay, S.S Ray: ‘Morphological, thermal, and thermomechanical properties of cellulose nanocrystals reinforced polylactide/poly[(butylene succinate)-co-adipate] blendcomposite foams’. Mol. Cryst. Liq. Cryst, 2013, 585, pp. 53–59.
    [33] Xiaoyue Mu , Derek G. Gray: ‘Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D ‘‘coffee-stain’’ rings’. The Royal Society of Chemistry , 2015, 22(2)
    [34] Derek G. Gray , Xiaoyue Mu: ‘Chiral nematic structure of cellulose nanocrystal suspensions and films; polarized light and atomic force microscopy’. Materials, 2015, 8, pp. 7873–7888;
    [35] K. Katsaros: ‘Evaporation and humidity’. 2001 Academic Press.
    [36] Y. Habibi, T. Heim, R. Douillar: ‘AC electric field-assisted assembly and alignment of cellulose nanocrystals’. Jurnal of Polymer Science: Part B: Polymer Physics, 2008, 46(14), pp. 1430–1436.
    [37] T. Chen, Q. Zhao, X. Meng, Y. Li, H. Peng, A.K. Whittaker, S. Zhu: ‘Ultrasensitive magnetic tuning of optical properties of films of cholesteric cellulose nanocrystals’. ACS Nano, 2020; 14(8), pp. 9440-9448
    [38] F. Jativa, C. Schu¨tz, L. Bergstro¨, X. Zhangb , B.Wicklein: ‘Confined self-assembly of cellulose nanocrystals in a shrinking droplet’. Soft Matter, 2015, 11, pp. 5374-5378.
    [39] C. Honorato-Rios, A. Kuhnhold, J. R. Bruckner, R. Dannert, T. Schilling, Jan P. F. Lagerwall1: ‘Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions(2)’.2016, 3, Article 21
    [40] W. Verlag & Co. K, Weinheim: ‘Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions’. ChemPhys, 2014, 15(9), pp. 1477-1484.
    [41] X. Gray: ‘Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process’. Langmuir, 2014, 30(31), pp. 9256–9260

    QR CODE