簡易檢索 / 詳目顯示

研究生: 張仲杰
Chung-Chieh Chang
論文名稱: S-layer功能化表面之研究
Study on S-layer Functionalized Surfaces
指導教授: 譚世特
Shih-Teh Tan
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 28
中文關鍵詞: 表層結晶蛋白表面功能化耐輻射奇異球菌
外文關鍵詞: S-layer, surface functionalization, Deinococcus radiodurans
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 耐輻射奇異球菌Deinococcus radiodurans細胞表面結晶蛋白(S-layer protein, SLP)已知為126 kDa具自我組合能力的蛋白質分子。本研究中,我們以另一耐輻射奇異球菌野生型菌株Deinococcus radiodurans IR (輻射抗性與生長速率均較R1為高)為材料,對D. radiodurans IR SLP作自組合性質分析及應用層面的開發。
    我們在低濃度氫鍵破壞劑 (hydrogen-bonds-breaking agent)存在下,成功展現D. radiodurans IR SLP在native silicon wafer表面的自組合能力 (self-assembly capacity)。此自組合產品經光學顯微鏡檢(optic microscopy)及共軛焦顯微鏡鏡檢(confocal laser scanning microscopy),發現為大面積規模覆蓋wafer的膜狀結構(Large-scale self-assembly film, Large-scale SAF)與多層次堆疊結構(Multi-layer self-assembly film, Multi-layer SAF)。原子力顯微鏡鏡檢(atomic force microscopy)顯示,SAF的表面形貌為等大小顆粒狀結構。
    應用層面上,我們能夠使用不同的系統在經由SAF功能化的wafer表面直接合成Ag nanowire(直徑~50-100 nm)以及不同形態的Ag nanostructures。對於Ag nanowire生成的條件我們也作了一些修正,透過製程改進可以將Ag nanowire平均長度提升到90 ± 6.7 μm (aspect ratio > 1000)。


    The surface layer (S-layer) of Deinococcus radiodurans composed of single protein, that molecular weight is about 126 kDa. In this article, we got some investigations about properties of the D. radiodurans IR S-layer protein (SLP) self-assembled on native silicon wafer. We also found great potential of D. radiodurans IR SLP that apply in the nanobiotechnology.
    We had demonstrate the capacity of D. radiodurans IR SLP self-assembled on native silicon wafer in low concentration hydrogen-bond-breaking agent which had added in a cell wall preparation to extract SLP. In optical microscopy (OM) and confocal laser scanning microscopy (confocal), we found self-assembled products with two structures on wafer:(1) Large-scale self-assembled film (large-scale SAF). (2) Multi-layered self-assembled film (multi-layered SAF). Atomic force microscopy (AFM) studies show that surface morphology of SAF was composed of uniform particles.
    In applications, we used different buffer systems to directly synthesize Ag nanowire and variant Ag nanostructures on D. radiodurans IR SLP functionalized wafer. In improved systems, we can get dispersed Ag nanowire on wafer with average length=90 ± 6.7 μm (aspect ratio ~1000). In another system, we can adjust pH to fabricate variant Ag nanostructures on SAF.

    1. 中文摘要.....................................................1 2. 英文摘要.....................................................2 3. 簡介.........................................................3 4. 材料與方法...................................................7 5. 結果.........................................................13 6. 討論.........................................................16 7. 參考資料.....................................................23 8. 圖...........................................................i 9. 表...........................................................xiii

    1. Sleytr, U. B., and P. Messner. 1983. Crystalline surface layers on bacteria. Annu. Rev. Microbiol. 37: 311-339.
    2. Thornley, M. J., A. M. Glauert, and U. B. Sleytr. 1974. Structure and assembly of bacterial surface layers composed of regular arrays of subunits. Phil. Trans. R. Soc. Lond. B. 268: 147-153.
    3. Glauert, A. M., and M. J. Thornley. 1969. The topography of the bacterial cell wall. A. Rev. Microbiol. 23: 159-198.
    4. Holt, S. C., and E. R. Leadbetter. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bact. Rev. 33: 346-378.
    5. Mesnage, S., E. Tosi-couture, P. Gounon, M. Mock, and A. Fouet. 1998. The capsule and S-layer: Two independent and yet compatible macromolecular structures in Bacillus anthracis. J. Bacteriol. 180: 1488-1495.
    6. Müller, D. J., W. Maumeister, and A. Engel. 1996. Conformation change of the hexagonally packed intermediate layer of Deinococcus radiodurans Monitored by atomic force microscopy. J. Bacteriol. 178: 3025-3030.
    7. Sleytr, U. B., S. Margit, P. Dietmar, and S. Bernhard. 2001. Characterization and use of crystalline bacterial cell surface layers. Progress in Surface Science. 68: 231-278.
    8. Pum, D., A. Neubauer, E. Gyoervary, M. Sára, Sleytr. U. B. 2000. S-layer proteins as basic building blocks in a biomolecular construction kit. Nanotechnology. 11: 100-107.
    9. Glauert, A. M., and M. J. Thornley. 1973. Self-assembly of a surface component of a bacterial outer membrane. John Innes Symp. 1: 297-305.
    10. Sleytr, U. B. 1976. Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J. Ultrastruct. Res. 55: 360-377.
    11. Scholz, H. C., E. Riedmann, A. Witte, W. Lubitz, and B. Kuen. 2001. S-layer variation in Bacillus stearothermophilus PV72 is based on DNA rearrangement between the chromosome and the naturally occurring megaplasmids. J. Bacteriol. 183: 1672-1679.
    12. Thornley, M. J., R. W. Horne, and A. M. Glauert. 1965. The fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 51: 267-289.
    13. Work, E., and H. Griffiths. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95: 641-657.
    14. Sleytr, U. B., M. Kocur, A. M. Glauert, and M. J. Thornley. 1973. A study of freeze-etching of the fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 94: 77-87.
    15. Lancy, JR., P., and R. G. E. Murray. 1978. The envelope of Micrococcus radiodurans: isolation, purification, and preliminary analysis of the cell wall layers. Can. J. Microbiol. 24: 162-176.
    16. Baumeister, W., and O. Kübler. 1978. Topographic study of the cell surface of Micrococcus radiodurans. PNAS. U.S.A. 75(11): 5525-5528.
    17. Thompson, B. G., and R. G. E. Murray. 1982. The association of the surface array and the outer membrane of Deinococcus radiodurans. Can. J. Microbiol. 28: 1081-1088.
    18. Karrasch, S., R. Hegerl, J. H. Hoh, W. Baumeister, and A. Engel. 1994. Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. PNAS. USA. 91: 836-838.
    19. Müller, D. J., D. Fotiadis, S. Scheuring, C. Möller, and A. Engel. 2000. Comformation changes, flexibilities and intramolecular forces observed on individual proteins using AFM. Single Mol. 1: 115-118.
    20. Müller, D. J., and A. Engel. 1999. Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J. Mol. Biol. 285: 1347-1351.
    21. Reinhoudt, D. N., and M. Crego-Calama. 2002. Synthesis beyond the molecule. Science. 295: 2403-2407.
    22. Beveridge, T. J. 1994. Bacterial S-layers. Curr. Opin. Struct. Biol. 4: 204-212.
    23. Chu, S., S. Cavaignac, J. Feutrier, B. M. Phipps, M. Kostrzynska,, W. W. Kay, and T. J. Trust. 1991. Structure of the tetragonal surface virulence array protein and gene of Aeromonas salmonicida. J. Biol. Chem. 266: 15258-15265.
    24. Sara, M., and Sleytr. U. B. 1987. Molecular sieving through S-layers of Bacillus stearothermophilus strains. J. Bacteriol. 169: 4092-4098.
    25. Engelhardt, H., and J. Peters. 1998. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J. Struct. Biol. 124: 276-302.
    26. Brechtel, E., M. Matuschek, A. Hellberg, E. M. Egelseer, R. Schmid, and H. Bahl. 1999. Cell wall of Thermoanaerobacterium thermosulfurigenes EM1: isolation of its components and attachment of the xylanase XynA. Arch. Microbiol. 171: 159-165.
    27. Pum D., and Sleytr. U. B. 1999. The application of bacterial S-layers in molecular nanotechnology. Nanotechnology. 17: 8-12.
    28. Pum D., G. Stangl, C. Sponer, K. Riedling, P. Hudek, W. Fallmann, and Sleytr. U. B. 1997. Patterning of monolayers of crystalline S-layer proteins on a silicon surface by deep ultraviolet radiation. Microelectronic Engineering. 35: 297-300.
    29. Müller, D. J., W. Maumeister, and A. Engel. 1999. Controlled unzipping of a bacterial surface layer with atomic force microscopy. PNAS. 96: 13170-13174.
    30. Küpcü, S., Sára, M., and Sleytr. U. B. 1995. Liposomes coated with crystalline bacterial cells surface protein (S-layer) as immobilization structures for macromolecules. Biochim Biophys Acta. 1235(2):263-269.
    31. Mader, C., Küpcü, S., Sára, M., and Sleytr. U. B. 1999. Stabilizing effect of an S-layer on liposomes towards thermal or mechanical stress. Biochim Biophys Acta. 1418(1):106-16.
    32. Mader, C., Küpcü, S., Sleytr. U. B., and Sára, M. 2000. S-layer-coated liposomes as a versatile system for entrapping and binding target molecules. Biochim Biophys Acta. 1463(1):142-50.
    33. Moll, D., Huber, C., Schlegel, B., Pum D, Sleytr. U. B., and Sára, M. 2002. S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. PNAS. 99:14646-51.
    34. Neubauer, A., Pum D., Sleytr. U. B., Klimant, I., and O. S. Wolfbeis. 1996. Fibre-optic glucose biosensor using enzyme membranes with 2-D crystalline structure. Bioscensor & Bioelectronics. 11:317-325.
    35. Shenton, W., Pum D., Sleytr. U. B., and Mann S. 1997. Synthesis of cadmiumsulphide superlattices using self-assembled bacterial S-layers. Nature. 389:585-587.
    36. Pum, D., and Sleytr. U. B. 1995. Monomolecular reassembly of a crystalline bacterial cell surface layer (S-layer) on untreated and modified silicon surface. Supramolecular science. 2:193-197
    37. Pum, D., and Sleytr. U. B. 1994. Large-scale reconstitution of crystalline bacterial surface layer proteins at the air-water interface and on lipid films. Thin solid films. 244:882-886

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE