簡易檢索 / 詳目顯示

研究生: 蔡名詔
Ming-Chao Tsai
論文名稱: 二氧化鈦一維奈米帶之合成與分析
Synthesis and Analysis of One-Dimensional Titanium Dioxide Nanobelts
指導教授: 施漢章
Dr. Han-Chang Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 58
中文關鍵詞: 二氧化鈦奈米帶場發射金紅石
外文關鍵詞: titanium dioxide, nanobelt, field emission, rutile
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中,我們以金做為催化劑,利用兩階段式氣氛熱處理的方式對鍍有鈦膜之矽基板進行熱處理以成長二氧化鈦奈米帶。在微觀之結構分析方面,我們以穿透式電子顯微鏡選區繞射鑑定所成長之二氧化鈦奈米帶為金紅石相之單晶結構,在巨觀的結構鑑定方面我們也以拉曼光譜分析確定其結構與奈米帶在基板上分佈之均勻性。此外我們也以Photoluminescence Spectrum分析奈米帶之band structure,確定其價帶與傳導帶間之能隙為3.0eV。利用真空二極體之結構,我們測量出二氧化鈦奈米帶在矽基板上之場發射性質,並認為二氧化鈦奈米帶具有開發成場發射電子元件之潛力。另外我們依據數種不同條件下成長奈米帶之結果,以及穿透式電子顯微鏡與能量分散式光譜儀分析之結果推論其成長機制為VLS成長機制(Vapor-Liquid-Solid growth mechanism)。


    第一章 緒論…………………………………………………………1 1-1 奈米材料之特性與應用…………………………………………1 1-2 二氧化鈦結晶結構與缺陷………………………………………2 1-3 二氧化鈦之運用…………………………………………………5 1-4 研究動機…………………………………………………………6 第二章 實驗方法及原理……………………………………………10 2-1 實驗流程…………………………………………………………10 2-2 實驗儀器…………………………………………………………11 2-2-1水平爐管系統…………………………………………………11 2-2-2水平爐管氣體路線配置圖……………………………………11 2-3 實驗方法…………………………………………………………12 2-3-1成長二氧化鈦奈米帶之實驗步驟……………………………13 2-3-2 TEM試片之備製………………………………………………13 2-3-3 場發射性質量測………………………………………………14 2-4 實驗分析原理……………………………………………………16 第三章 二氧化鈦奈米帶之特性分析………………………………19 3-1 掃描式電子顯微鏡下之形貌……………………………………19 3-2 穿透式電子顯微鏡分析…………………………………………20 3-3 拉曼光譜分析……………………………………………………22 3-4 場發射特性分析…………………………………………………23 3-5 Photoluminescene光譜分析……………………………………27 第四章 成長機制推論………………………………………………38 4-1一維奈米材料之成長機制………………………………………38 4-2 二氧化鈦奈米帶之成長機制……………………………………40 第五章 結論…………………………………………………………50 第六章 未來工作……………………………………………………51 Reference………………………………………………………………54

    [1] YM. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics, Wiley, New York, Chapter 1 (1997)
    [2] R.Könenkamp, Photoelectric Properties and Applications of Low-Mobility Semiconductors, Springer, Germany, Chapter 4 (2000)
    [3] YM. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics, Wiley, New York, p142 (1997)
    [4] V. Subramanian, E. E. Wolf, and P. V. Kamat, J. Am. Chem. Soc. 126, 4943 (2004)
    [5] D. Wicaksana, A. Kobayashi, and A. Kinbara, J. Vac. Sci. Techno. A, 10, 1479 (1990)
    [6] LJ. Meng, C. P. Moreira, and M. P. Santos, Thin Solid Films 239, 117 (1994)
    [7] M. Cevro and G. Carter, J. Phys. D: Appl. Phys. 28, 962 (1995)
    [8] JP. Liu, J. Wang and R Raj, Thin Solid Film 204, 113 (1991)
    [9] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, J. Appl. Phys. 75, 2040 (1994)
    [10] Z. Dai, H. Naramoto, K. Narumi, and S. Yamaoto, J. Phys. Condens. Matter 11, 8511 (1999)
    [11] Y. Lin, GS. Wu, XY. Yuan, T Xie, and LD. Zhang, J. Phys. Condens. Matter, 15, 2917 (2003).
    [12] YH. Zhang, CK. Chan, J. F. Porter, and W. Guo, J. Mater. Res. 13, 9 (1998)

    [13] A. Chaves, K. S. Katiyan, and S. P. S. Porto, Phys, Rev. 10, 3522 (1974)
    [14] TC. Lu, L. B. Lin, S. Y. Wu, X. C. Xu, and G. Chen, Surf. Coat. Techno. 158-159, 431 (2002)
    [15] TC. Lu, L. Lin, X. Zu, S. Zhu, and L. Wang, Nucl. Instr. and Meth. in Phys. Res. B 218, 111 (2004).
    [16] T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc, 7, 321 (1978)
    [17] G. A. Tompsett, G. A. Bowmaker, B. P. Cooney, J. B. Metson, K. A. Rodgers, and J. M. Seakins, J. Raman Spectrosc. 26, 57 (1995)
    [18] R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928)
    [19] J. Chen, SZ. Deng, NS. Xu, S. Wang, X. Wen, S. Yang, C. Yang, J. Wang, and W. Ge, Appl. Phys. Lett. 80, 3620 (2002)
    [20] A. Wadhawan, R. E. Stallcup II, and J. M. Perez, Appl. Phys. Lett. 78, 108 (2001)
    [21] A. Wadhawan, R. E. Stallcup II, K. F. Stephens II, J. M. Perez, and I. A. Akwani, Appl. Phys. Lett. 79, 1867 (2001).
    [22] RS. Chen, YS. Huang, YM. Liang, CS. Hsieh, DS. Tsai, and KK. Tiong, Appl. Phys. Lett. 84, 9 (2004)
    [23] CT. Hsieh, JM. Chen, HH. Lin, and HC. Shih, Appl. Phys. Lett. 83, 16 (2003).
    [24] Y. B. Li, Y. Bando, T. Sato, and K. Kurashima, Appl. Phys. Lett. 81, 144 (2002)

    [25] S. Iijima, Nature 345, 56, (1991).
    [26] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996)
    [27] M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks Jr. S. Washburn et al, Nature 289, 582 (1997)
    [28] D. A. Walter, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74, 873 (1999)
    [29] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512 (1999)
    [30] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han et al, Appl. Phys. Lett. 75, 3129 (1999)
    [31] W. A. deHeer, A. Châtelain, and D. Ugarte, Science 270, 1179 (1995)
    [32] C.R. Martin, Science 266, 1961 (1994)
    [33] B.R. Martin, D.J. Dermody, B.D. Reiss, M. Fang, L.A. Lyon, M.J.
    Natan, T.E. Mallouk, Adv. Mater. 11, 1021 (1999)
    [34] Z. Zhang, D. Gekhtman, M.S. Dresselhaus, J.Y. Ying, Chem. Mater. 11,1659 (1999)
    [35] G. Sauer, G. Brehm, S. Schneider, J. Appl. Phys. 91, 3243 (2002)
    [36] A. M. Morales and C. M. Lieber, Science 279, 208 (1998)
    [37].D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G. W. Zhou, Z. G. Bai, Z. Zhang, and S. Q. Feng, Solid State Commun. 105, 403 (1998)
    [38] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 72, 1835 (1998)
    [39] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)
    [40] G. W. Zhou, Z. Zhang, Z. G. Bai, S. Q. Feng, and D. P. Yu, Appl. Phys. Lett. 73, 677 (1998)
    [41] Q. Gu, H. Dang, J. Cao, J. Zhao, and S. Fan, Appl. Phys. Lett. 76, 21 (2000)
    [42] Y.B. Li, Y. Bamdo, T. Sato, and K. Kurashima, Appl. Phys. Lett. 81, 1, (2002)
    [43] JJ. Wu and SC. Lui, J. Phys. Chem. B, 106, 9546 (2002)
    [44] P.X. Gau and ZL. Wang, Appl. Phys. Lett. 84, 15, (2004)
    [45] J. Zhang and L. Zhang, Solid State. Commun. 122, 493 (2002)
    [46] JJ. Wu and CC. Yu, J. Phys. Chem. B 108, 11 (2004)
    [47] R. S. Wanger and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
    [48] T. J Trentler; K.M. Hickman, S. C. Goel; A.M. Viano; P. C. Gibbons; and W. E. Buhro Science 270, 1791 (1995)
    [49] SH. Tsai, FK. Chiang, TG. Tsai, FS. Shieu, and HC. Shin, Thin Solid Films 366, 11 (2000)
    [50] SL. Sung, SH. Tsai, XW. Liu, and HC. Shih, J. Mater. Res. Soc. 15, 2 (2000)
    [51] HC. Lo, D. Das, JS. Hwang, KH. Chen, CH. Hsu, CF. Chen, and LC. Chen, Appl. Phys. Lett. 83, 7 (2003)
    [52] J. L. Murray (editor), Phase Diagrams of Binary Titanium Alloys, ASM International (1987)

    [53] YM. Gao, W. Lee, R. Trehan, R. Kershaw, K. Dwight, and A. Wold, Mater. Res. Bull. 26. 1247 (1991)
    [54] W. lee, HS. Shen, K. Dwight, and A. Wold, J. Solid State. Chem. 106, 288 (1993)
    [55] CM.Wang, A. Heller, H. Gerischer, J. Am. Chem. Soc. 114, 5230 (1992)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE