研究生: |
陳昱辰 Chen, Yu-Chen |
---|---|
論文名稱: |
新穎懸臂結構設計於壓電麥克風之性能提升 Novel Cantilever Structure Design for Performance Enhancement of Piezoelectric MEMS Microphone |
指導教授: |
方維倫
Fang, Wei-leun |
口試委員: |
李昇憲
Li, Sheng-Shian 吳名清 Wu, Mingching |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 微機電麥克風 、壓電 、懸臂樑 、電極 、高訊雜比 、低頻損失 |
外文關鍵詞: | MEMS microphone, piezoelectric, cantilever, electrode, high SNR, low cut-off frequency |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電式微機電麥克風擁有防水防塵與低功耗等適合未來物聯網語音辨識與控制應用的優勢,然而目前市面上的壓電式麥克風之訊雜比仍不及電容式微機電麥克風。本研究以提升微機電麥克風的訊雜比與改善低頻靈敏度損失為兩大目標,透過PZT壓電薄膜之SOI晶圓製程進行壓電式麥克風之設計與實現,提出不同於典型之懸臂樑結構作為麥克風之振膜,設計部分移除PZT壓電層的三角形PZT懸臂樑麥克風,以提高受聲壓時結構所產生之彎曲應力與輸出能量,藉以提升壓電式麥克風的訊雜比;再設計保留懸臂樑末端PZT作為支撐結構的雙曲形PZT懸臂樑麥克風,以抑制殘餘應力所造成的翹曲,在提升訊雜比的同時改善低頻靈敏度的損失。無響箱量測結果顯示,三角形PZT懸臂樑麥克風之訊雜比達到82.4dB,相比商用麥克風之三角形懸臂樑結構的72.6dB提升了9.8dB;雙曲型PZT懸臂樑麥克風之訊雜比達到81.7,提升了9.1dB,同時截止低頻則較三角形PZT懸臂樑降低了13Hz,成功改善了低頻靈敏度損失。
Piezoelectric MEMS microphones have advantages such as water/ dustproof and low power consumption which are suitable for applications in the Internet of Things. However, the signal-to-noise ratio (SNR) of the piezoelectric microphones are still not as good as that of the capacitive MEMS microphones. The 2 targets of this study are: First, to enhance the SNR of the piezoelectric microphones. Second, to improve the low-frequency sensitivity loss. By using the SOI wafer with PZT thin film processes, the designs of piezoelectric MEMS microphone are realized. This study has proposed several unconventional cantilever designs as the structure. The triangular PZT cantilever is designed to have the PZT piezoelectric layer be partially removed to increase the bending stress and output energy under sound pressure. Thereby increasing the signal-to-noise ratio. The dual-curved PZT cantilever is designed to retain the PZT at the tip of the cantilever as a supporting structure to suppress the warpage caused by residual stress. Therefore it can improve the low-frequency sensitivity loss while remaining the high SNR. Measurement results have shown that the SNR of the triangular PZT cantilever design is 82.4dB, which is 9.8dB higher than the triangle cantilever structure of the commercial microphone. The SNR of the dual-curved PZT cantilever design is 81.7dB, having an increase of 9.1dB. Moreover, the low cut-off frequency is 13Hz lower than that of the triangular PZT cantilever design, which means it successfully improves the low-frequency sensitivity loss.
[1] D. Bell, T. Lu, N. Fleck and S. Spearing, "MEMS actuators and sensors: observations on their performance and selection for purpose," Journal of Micromechanics and Microengineering, 15, pp. 153-164, 2005.
[2] http://www.yole.fr
[3] http://www.yole.fr/AcousticMEMS_AudioSolutions_Overview
[4] M. Shah, I. Shah, D. Lee and S. Hur, "Design Approaches of MEMS Microphones for Enhanced Performance," Journal of Sensors, 2019, pp. 1-26, 2019.
[5] C. Leinenbach, K. van Teeffelen, F. Laermer and H. Seidel, "A new capacitive type MEMS microphone," 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, 2010, pp. 659-662.
[6] J. W. Weigold, T. J. Brosnihan, J. Bergeron and X. Zhang, "A MEMS Condenser Microphone for Consumer Applications," 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, 2006, pp. 86-89.
[7] A. Dehé, M. Wurzer, M. Füldner and U. Krumbein, "Design of a poly silicon MEMS microphone for high signal-to-noise ratio," 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC), Bucharest, 2013, pp. 292-295.
[8] P. V. Loeppert and S. B. Lee, “The First Commercialized MEMS Microphone,” Solid-state Sensors Actuators and Microsystems Workshop, Hilton Head Island, SC, June, 2006, pp. 27–30.
[9] T. Kasai, S. Sato, S. Conti, I. Padovani, F. David, Y. Uchida, T. Takahashi, and H. Nishio, "Novel concept for a MEMS microphone with dual channels for an ultrawide dynamic range," 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, 2011, pp. 605-608.
[10] J. J. Neumann and K. J. Gabriel, "CMOS-MEMS membrane for audio-frequency acoustic actuation," Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems, Interlaken, Switzerland, 2001, pp. 236-239.
[11] C. Huang, C.-H Lee, T.-M Hsieh, L.-C Tsao, S. Wu, J. Liou, M.-Y Wang, L.-C Chen, M.-C Yip, and W. Fang, "Implementation of the CMOS MEMS Condenser Microphone with Corrugated Metal Diaphragm and Silicon Back-Plate," Sensors, 11, pp. 6257-6269, 2011.
[12] T. S. Chew, “White paper – Smart Everything and the Rise of the Microphone Array,” Vesper, Boston, 2019.
[13] https://en.wikipedia.org/wiki/Piezoelectricity
[14] R. J. Littrell, “High performance Piezoelectric MEMS Microphone,” PhD Thesis, 2010
[15] A. Jain, K. J. Prashanth, A. Sharma, A. Jain and P.N. Rashmi, "Dielectric and piezoelectric properties of PVDF/PZT composites: A review," Polymer Engineering & Science, 55, pp. 1589-1616, 2015.
[16] M. Royer, J. Holmen, M. Wurm, O. Aadland and M. Glenn, "ZnO on Si integrated acoustic sensor," Sensors and Actuators, 4, pp. 357-362, 1983.
[17] E. S. Kim and R. Muller, "IC-Processed piezoelectric microphone,", IEEE Electron Device Letters, 8, pp. 467-468, 1987.
[18] R. Ried, E. S. Kim, D. Hong and R. Muller, "Piezoelectric microphone with on-chip CMOS circuits", Journal of Microelectromechanical Systems, 2, pp. 111-120, 1993.
[19] H. Yan and E. S. Kim, "Corrugated diaphragm for piezoelectric microphone," Proceedings 1996 IEEE Conference on Emerging Technologies and Factory Automation. ETFA '96, Kauai, HI, USA, 1996, pp. 503-506.
[20] S. Ko, Y. Kim, S. Lee, S. Choi and S. Kim, "Micromachined piezoelectric membrane acoustic device," Sensors and Actuators A: Physical, 103, pp. 130-134, 2003.
[21] M. Williams, B. Griffin, T. Reagan, J. Underbrink and M. Sheplak, "An AlN MEMS Piezoelectric Microphone for Aeroacoustic Applications," Journal of Microelectromechanical Systems, 21, pp. 270-283, 2012.
[22] J. Segovia-Fernandez, S. Sonmezoglu, S. T. Block, Y. Kusano, J.M. Tsai, R. Amirtharahah, and D. A. Horsley., "Monolithic piezoelectric Aluminum Nitride MEMS-CMOS microphone", 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, 2017, pp. 414-417.
[23] J. -. Huang, S.-C Lo, J.-J Wang, C.-E Lu, S.-H Tseng, M. -C Wu, W. Fang, "High sensitivity and high S/N microphone achieved by PZT film with central-circle electrode design," 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, 2017, pp. 1188-1191
[24] S. Kwon, W. Huang, S. Zhang, F. Yuan and X. Jiang, "Study on a flexoelectric microphone using barium strontium titanate,"Journal of Micromechanics and Microengineering, 26, no. 4, p. 045001, 2016.
[25] 黃子榮, “提升 PZT 壓電麥克風 SNR 值之結構與電極設計,” 動力機械工程學系碩士論文, 2018.
[26] Seung S. Lee, R. P. Ried and R. M. White, "Piezoelectric cantilever microphone and microspeaker," in Journal of Microelectromechanical Systems, 5, pp. 238-242, Dec. 1996.
[27] L. Zhang, T. Ren, J. Liu, L. Liu and Z. Li, "Fabrication of a Cantilever Structure for Piezoelectric Microphone," Japanese Journal of Applied Physics, 41, 11, pp. 7158-7159, 2002.
[28] N. Ledermann, P. Muralt, J. Baborowski, M. Forster and J. Pellaux, "Piezoelectric Pb(Zrx, Ti1 x)O3thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors," Journal of Micromechanics and Microengineering, 14, pp. 1650-1658, 2004.
[29] Y. Seo, D. Corona and N. Hall, "On the theoretical maximum achievable signal-to-noise ratio (SNR) of piezoelectric microphones," Sensors and Actuators A: Physical, 264, pp. 341-346, 2017.
[30] https://vespermems.com/
[31] “Application note An-1112: Microphone Specifications Explained,” InvenSense, 2016.
[32] P. Sennequier, “Application note An-4598: Pre-amplifying the analog output of a MEMS microphone,” STMicroelectronics, 2015
[33] L. B. a. L. Ve'r, Noise and Vibration Control Engineering, New York: John Wiley & Sons, Inc, 1992.
[34] http://www.matbase.com/
[35] D. Singh, “The solid state as a fabric for intertwining chemical bonding, electronic structure and magnetism,” AIP Conference Proceedings, 2012, pp 226-275.
[36] M. Dekkers, H. Boschker, M. V. Zalk, M. Nguyen, H. Nazeer, E. Houwman and G. Rijnders, "The significance of the piezoelectric coefficientd31,effdetermined from cantilever structures," Journal of Micromechanics and Microengineering, 23, p. 025008, 2012.
[37] R. Littrell and K. Grosh, "Modeling and Characterization of Cantilever-Based MEMS Piezoelectric Sensors and Actuators," in Journal of Microelectromechanical Systems, vol. 21, no. 2, pp. 406-413, April 2012.
[38] Y. Tsujiura, S. Kawabe, F. Kurokawa, H. Hida and I. Kanno, "Comparison of effective transverse piezoelectric coefficientse31,fof Pb(Zr,Ti)O3thin films between direct and converse piezoelectric effects", Japanese Journal of Applied Physics, 54, pp. 10NA04, 2015.
[39] H. Tilmans, "Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems", Journal of Micromechanics and Microengineering, 6, pp. 359-359, 1996.
[40] H. Tilmans, "Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems", Journal of Micromechanics and Microengineering, 7, pp. 285-309, 1997.
[41] F. Cerini and S. Adorno, "Flexible Simulation Platform for Multilayer Piezoelectric MEMS Microphones with Signal-to-Noise Ratio (SNR) Evaluation", Proceedings, 2, pp 862, 2018.
[42] J. Karki, “Signal Conditioning Piezoelectric Sensors, Application Report,” Texas Instrument, 2000.