簡易檢索 / 詳目顯示

研究生: 楊偉昌
Wei-Chang Yang
論文名稱: 以矽化物為催化劑與源極汲極材料於自動對準奈米碳管場效電晶體之應用
Silicide as a Catalyst and Source/Drain Electrode for Self-aligned Carbon Nanotube Field-Effect Transistor
指導教授: 游萃蓉
Tri-Rung Yew
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 55
中文關鍵詞: 奈米碳管矽化物化學氣相沉積
外文關鍵詞: Carbon nanotube, Silicide, Chemical vapor deposition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Single-walled carbon nanotubes (CNTs) are synthesized between predefined catalytic silicide pads by chemical vapor deposition (CVD) from 600 C to 900 C. Self-assembled field-effect transistors fabricated with these controlled-growth nanotubes between silicide electrodes show high-level compatibility with current silicon CMOS process. The silicide pads are formed by thermal annealing process of multi-layer thin film consisting of catalytic metal, supporting materials, and silicon with various crystalline structures. Before the synthesis process, silicide pads are pretreated by thermal and plasma to enhance its catalytic ability. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, and electrical measurement are employed to characterize the physical, chemical, and electrical properties of the self-aligned carbon nanotube field-effect transistors. Furthermore, sensor applications will be discussed with these self-assembled field-effect transistors.


    Abstract I Acknowledgement II Contents IV List of Figure VI List of Table X Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Carbon Nanotube Field-Effect Transistor 3 2.2 Cobalt Silicide Formation 7 Chapter 3 Experimental 11 3.1 CNFET Fabrication 11 3.1.1 Process Flow 11 3.1.2 Substrate Preparation 13 3.1.3 Silicide Electrodes Deposition 13 3.1.4 Layout and Lithography 14 3.1.5 Carbon Nanotube Growth in Thermal CVD 16 3.1.6 CNT Morphology Analysis 17 3.1.7 Raman Spectrum Analysis 17 3.1.8 Microstructure Examination 18 3.1.9 Electrical Characterization 18 Chapter 4 Results and Discussion 19 4.1 Morphology of CNFET 19 4.2 Graphitization of Carbon Nanotubes 24 4.2.1 CNT Growth versus Process Temperature 24 4.2.2 CNT Growth versus Process Pressure 26 4.2.3 CNT Growth versus C2H2/H2 Flow Ratio 29 4.2.4 CNT Growth versus Cap Layer Thickness 32 4.3 Microstructure of Cobalt Silicide Nanoparticles 34 4.4 Electrical Characteristics of CNFET 45 Chapter 5 Conclusion 52 Chapter 6 Reference 53

    [1] Sander J. Tans et al, Nature (1998), 393, 49-52. Room-temperature transistor based on a single carbon nanotube.
    [2] S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes – Basic Concepts & Physical Properties (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).
    [3] M. Nihei et al, Japanese Journal of Applied Physics (2004), 43(4B), 1856-1859. Simultaneous Formation of Multiwall Carbon Nanotubes and their End-Bonded Ohmic Contacts to Ti Electrodes for Future ULSI Interconnects.
    [4] Ali Javey et al, Nano Letters (2002), 2(9), 929-932. Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators.
    [5] Ali Javey et al, Nature (2003), 424(6949), 654-657. Ballistic carbon nanotube field-effect transistors.
    [6] M. H. Yang et al, Applied Physics Letter (2006), 88, 113507. Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors.
    [7] R. Martel et al, Applied Physics Letters (1998), 73, 2447.
    [8] Adrian Bachtold et al, Science (2001), 294(5545), 1317-1320. Logic Circuits with Carbon Nanotube Transistors.
    [9] Y. Lin et al, IEEE Transactions Nanotechnology (2005), 4(5), 481-489. High-performance carbon nanotube field-effect transistor with tunable Polarities.
    [10] A. Alberti et al, Electrochemical and Solid-State Letter (2005), 8(2), G47-G50. Effect of a Ti Cap Layer on the Diffusion of Co Atoms during CoSi2 Reaction.
    [11] S. Buschbaum et al, Microelectronic Engineering (2004), 76, 311-317.
    [12] S. Iijima, Nature (1991), 354, 56.
    [13] M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.), Carbon Nanotubes: Synthesis, Struture, Properties, and Application, Springer, Berlin (2002).
    [14] S. Iijima et al, Nature (1993), 363, 603.
    [15] D. S. Bethune et al, Nature (1993), 363, 605.
    [16] T. Guo et al, Chemical Physics Letters (1995), 243, 49.
    [17] T. Guo et al, Journal of Physical Chemistry (1995), 99, 10694.
    [18] A. Thess et al, Science (1996), 273, 483.
    [19] M. Yudasaka et al, Chemical Physics Letters (1997), 278, 102.
    [20] Jing Kong et al, Science (1998), 395, 878-881. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers.
    [21] Yiming Li et al, Nano Letters (2004), 4, 317-321. Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method.
    [22] Maex, K.; Van Rossum, M. Properties of Metal Silicides, INSPEC 1995, ISBN 0 85296 859 0.
    [23] C. H. Wen, H. C. Su et al, Nano Technology submitting.
    [24] H. Hiura et al, Chemical Physics Letters (1993), 202, 509.
    [25] A. Rao et al, Science (1997), 275, 187-191. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes.
    [26] J. P. Gambino et al, Journal of Electrochemistry Society (1998), 145, 1384.
    [27] C. Bower et al, Applied Physics Letters (2000), 77, 2767-2769.
    [28] J. Appenzeller et al, Physical Review Letters (2002), 89, 126801.
    [29] S. Suzuki et al, Applied Physics Letters (2000), 76, 4007-4009.
    [30] Y. Xue et al, Physical Review B (2004), 69, 161402(R)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE