研究生: |
楊偉昌 Wei-Chang Yang |
---|---|
論文名稱: |
以矽化物為催化劑與源極汲極材料於自動對準奈米碳管場效電晶體之應用 Silicide as a Catalyst and Source/Drain Electrode for Self-aligned Carbon Nanotube Field-Effect Transistor |
指導教授: |
游萃蓉
Tri-Rung Yew |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 奈米碳管 、矽化物 、化學氣相沉積 |
外文關鍵詞: | Carbon nanotube, Silicide, Chemical vapor deposition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Single-walled carbon nanotubes (CNTs) are synthesized between predefined catalytic silicide pads by chemical vapor deposition (CVD) from 600 C to 900 C. Self-assembled field-effect transistors fabricated with these controlled-growth nanotubes between silicide electrodes show high-level compatibility with current silicon CMOS process. The silicide pads are formed by thermal annealing process of multi-layer thin film consisting of catalytic metal, supporting materials, and silicon with various crystalline structures. Before the synthesis process, silicide pads are pretreated by thermal and plasma to enhance its catalytic ability. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, and electrical measurement are employed to characterize the physical, chemical, and electrical properties of the self-aligned carbon nanotube field-effect transistors. Furthermore, sensor applications will be discussed with these self-assembled field-effect transistors.
[1] Sander J. Tans et al, Nature (1998), 393, 49-52. Room-temperature transistor based on a single carbon nanotube.
[2] S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes – Basic Concepts & Physical Properties (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).
[3] M. Nihei et al, Japanese Journal of Applied Physics (2004), 43(4B), 1856-1859. Simultaneous Formation of Multiwall Carbon Nanotubes and their End-Bonded Ohmic Contacts to Ti Electrodes for Future ULSI Interconnects.
[4] Ali Javey et al, Nano Letters (2002), 2(9), 929-932. Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators.
[5] Ali Javey et al, Nature (2003), 424(6949), 654-657. Ballistic carbon nanotube field-effect transistors.
[6] M. H. Yang et al, Applied Physics Letter (2006), 88, 113507. Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors.
[7] R. Martel et al, Applied Physics Letters (1998), 73, 2447.
[8] Adrian Bachtold et al, Science (2001), 294(5545), 1317-1320. Logic Circuits with Carbon Nanotube Transistors.
[9] Y. Lin et al, IEEE Transactions Nanotechnology (2005), 4(5), 481-489. High-performance carbon nanotube field-effect transistor with tunable Polarities.
[10] A. Alberti et al, Electrochemical and Solid-State Letter (2005), 8(2), G47-G50. Effect of a Ti Cap Layer on the Diffusion of Co Atoms during CoSi2 Reaction.
[11] S. Buschbaum et al, Microelectronic Engineering (2004), 76, 311-317.
[12] S. Iijima, Nature (1991), 354, 56.
[13] M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.), Carbon Nanotubes: Synthesis, Struture, Properties, and Application, Springer, Berlin (2002).
[14] S. Iijima et al, Nature (1993), 363, 603.
[15] D. S. Bethune et al, Nature (1993), 363, 605.
[16] T. Guo et al, Chemical Physics Letters (1995), 243, 49.
[17] T. Guo et al, Journal of Physical Chemistry (1995), 99, 10694.
[18] A. Thess et al, Science (1996), 273, 483.
[19] M. Yudasaka et al, Chemical Physics Letters (1997), 278, 102.
[20] Jing Kong et al, Science (1998), 395, 878-881. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers.
[21] Yiming Li et al, Nano Letters (2004), 4, 317-321. Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method.
[22] Maex, K.; Van Rossum, M. Properties of Metal Silicides, INSPEC 1995, ISBN 0 85296 859 0.
[23] C. H. Wen, H. C. Su et al, Nano Technology submitting.
[24] H. Hiura et al, Chemical Physics Letters (1993), 202, 509.
[25] A. Rao et al, Science (1997), 275, 187-191. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes.
[26] J. P. Gambino et al, Journal of Electrochemistry Society (1998), 145, 1384.
[27] C. Bower et al, Applied Physics Letters (2000), 77, 2767-2769.
[28] J. Appenzeller et al, Physical Review Letters (2002), 89, 126801.
[29] S. Suzuki et al, Applied Physics Letters (2000), 76, 4007-4009.
[30] Y. Xue et al, Physical Review B (2004), 69, 161402(R)