簡易檢索 / 詳目顯示

研究生: 朱益宏
Yi-Hong, Chu
論文名稱: 無參考影像之醫療影像品質評估
No-Reference Medical Image Quality Assessment
指導教授: 賴尚宏
Shang-Hong Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 59
中文關鍵詞: 影像品質評估醫療影像人類視覺系統恰辨差
外文關鍵詞: Image Quality, Medical Image, Human Visual System, JND
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們根據量測影像銳利度及雜訊度提出了一個不需參考影像的醫療影像品質評估系統。基於人類視覺系統(HVS)的概念,此一醫療影像品質評估系統設計為區塊模式,並且考慮最小可注意差異模型(JND),評估的醫療影像品質會透過對比權重以及背景亮度權重加以調整,以達到更符合人類對於醫療影像品質知覺表現的目標。
    我們所提出的無參照影像之醫療影像品質評估系統可以獨立運作,不需使用者輸入感興趣區(ROI);亦可透過使用者輸入的感興趣區而更精確的評估醫療影像品質。感興趣區是醫療人員在使用醫療影像時最關注的部份,用來標示診斷所需要的部份,在影像中使用額外的指引線作為標記。我們所提出的系統也可以支援除了單張影像之外的其他醫療影像種類;例如透過分析指引線(guide wire)的相似度以評估連續型醫療影像的品質。支援這些額外提供的資訊使得我們所提出的無參照影像之醫療影像品質評估系統能夠更有彈性且更符合實務上醫療診斷的需求。
    此一系統通過主觀品質評估的檢驗,經由計算與平均評定得分(MOS)的相關度,我們所提出的無參照影像之醫療影像品質評估系統無論在品質評估成果以及預測人類品質知覺表現的能力上,都有不錯的效能。


    In this thesis, we propose a no-reference medical image quality assessment system which measures sharpness and noise to be the image quality index. Based on the ideas of human visual system, the image quality assessment metric is block-based and the JND model, such as contrast weighting and background weighting, is introduced into our proposed quality measures to make the results closer to human perceptual performance.
    The proposed image quality assessment can work with or without the region of interest information provided by human assessors, which is the most critical region in an image for diagnosis. The proposed medical image quality assessment also has the ability to handle medical image sequences by measuring the gradient correlation on matched guide wire edge blocks. Using this additional information makes our proposed image quality assessment more flexible and practical for diagnostic purpose.
    The proposed no-reference medical image quality measure is tested by subjective evaluation. By calculating the correlation with MOS, it shows that our proposed method yields good performance and ability to predict the human perceptual medical image quality.

    Chapter 1 Introduction 1 Chapter 2 Related Work 4 2.1 Full-reference quality assessment 5 2.2 No-reference quality assessment 9 2.3 Medical image quality assessment 12 2.4 Just-Noticeable-Difference model 13 Chapter 3 Proposed Method 19 3.1 Sharpness Measure 22 3.1.1 Edge Model 23 3.1.2 Contrast Weighting 26 3.2 Noise Measure 30 3.2.1 Locally Linear Image Prediction Model 31 3.2.2 Background Luminance Weighting 33 3.3 Region of Interest 33 3.4 Quality Measure for Sequence Medical Images 35 Chapter 4 Experimental Results 38 4.1 Sharpness Measure 38 4.2 Noise Measure 43 4.3 Quality Measure for Sequence Medical Image 48 4.4 Subjective Evaluation 50 Chapter 5 Conclusion 54 Reference 56

    [1] “Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy”, Pamela C. Cosman, Robert M. Gray, and Richard A. Olshen, Proceedings of the IEEE, Vol. 82, No. 6, pp. 919-932, Jun. 1994.
    [2] “A practice of medical image quality evaluation”, Yun Zhou, Duo Chen, Chuan-fu Li, Xiao-ou Li, Huan-qing Feng, IEEE Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, Vol. 1, pp. 204-207, Dec. 2003.
    [3] “X-ray image system design using a human visual model”, W. B. Jackson, P. Beebee, D. A. Jared, D.K. Biegelsen, J. O. Larimer, J. Lubin, and J. L. Gille, Proceedings of the SPIE - The International Society for Optical Engineering Medical Imaging, Vol. 2708, pp. 29-40, Feb. 1996.
    [4] “Digital Video Image Quality and Perceptual Coding”, H.R. Wu and K.R. Rao, Taylor & Francis, 2006.
    [5] “Digital Video Quality – Vision Models and Metrics”, Stefan Winkler, Wiley, 2005.
    [6] “Image data compression having minimum of perceptual error”, Andrew B. Watson, US Patent Number: 5,629,780, 1997.
    [7] “A universal image quality index”, Z. Wang and A. C. Bovik, IEEE Signal Processing Letter, vol. 9, no. 3, pp. 81-84, Mar. 2002.
    [8] “Image quality assessment: From error measurement to structural similarity”, Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
    [9] “An SVD-Based grayscale image quality measure for local and global assessment”, Aleksandr Shnayderman, Alexander Gusev, and Ahmet M. Eskicioglu, IEEE Transactions on Image Processing, vol. 15, no. 2, Feb. 2006.
    [10] “Blind Image Quality Assessment”, Xin Lin, International Conference on Image Processing, vol. 1, pp. 449-452, Sep. 2002.
    [11] “Learning No-Reference Quality Metric by Examples”, Hanghang Tong, Mingjing Li, Hong-Jiang Zhang, Changshui Zhang, Jingrui He, Wei-Ying Ma, Proceedings of the 11th International Multimedia Modelling Conference, pp. 247-254, Jan. 2005.
    [12] “No-Reference Quality Assessment for JPEG2000 Compressed Images”, Hanghang Tong, Mingjing Li, Hong-Jiang Zhang, Changshui Zhang, International Conference on Image Processing, Vol. 5, pp. 3539-3542, Oct. 2004.
    [13] “No-reference objective wavelet based noise immune image sharpness metric”, R. Ferzli, and Lina J. Karam, International Conference on Image Processing, Vol. 1, pp. 405-408, Sep. 2005.
    [14] “Blind quality assessment for JPEG2000 compressed images”, H. R. Sheikh, Wang, L. Cormack, and A. C. Bovik, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, Vol.2, pp. 1735-1739, Nov. 2002.
    [15] “Human Visual System-Based No-Reference Objective Image Sharpness Metric”, R. Ferzli and L. J. Karam, IEEE International Conference on Image Processing, pp. 2949-2952, Oct. 2006.
    [16] “Uncertainty relations for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters”, J.G. Daugman, Journal of the Optical Society of America A, vol. 2, pp. 1160-1169, 1985.
    [17] “Biologically motivated computationally intensive approaches to image pattern recognition”, N. Petkov, Future Generation Computer Systems, 11 (4-5), 99. 451-465, 1995.
    [18] “A Perceptually Tuned Subband Image Coder Based on the Measure of Just-Noticeable-Distortion Profile”, C.H. Chou and Y.C. Li, IEEE trans on circuits and systems for video technology, vol. 5, No. 6, 1995.
    [19] “A practice of medical image quality evaluation”, Yun Zhou, Duo Chen, Chuan-fu Li, Xiao-ou Li, Huan-qing Feng, Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, Vol. 1, pp. 204-207, Dec. 2003.
    [20] “Towards a New Tool for the Evaluation of the Quality of Ultrasound Compressed Images”, C□cile Delgorge, Christophe Rosenberger, G□rard Poisson, and Pierre Vieyres, IEEE Transactions on Medical Imaging, Vol. 25, pp. 1502-1509, Nov. 2006.
    [21] “Objective Image Quality Measures for Evaluating Advanced MRI Reconstruction Methods”, Mathews, T., Jr., Smith, M.R., Canadian Conference on Electrical and Computer Engineering, Vol. 1, pp. 359-361, May 1996.
    [22] “Experimental Methodology”, Larry B. Christensen, Allyn & Bacon, 8th edition, Jul. 2000.
    [23] “基本心理歷程”, 劉英茂, 文笙出版社, 民國89年
    [24] “心理學實驗手冊”,鄭昭明, 大洋出版社, 民國85年
    [25] “A Software-Only Videocodec Using Pixelwise Conditional Differential Replenishment and Perceptual Enhancements”, Yi-Jen Chin and Berger, T., IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, pp. 438-450, Apr. 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE