簡易檢索 / 詳目顯示

研究生: 黃詩庭
Huang, Shih-Ting
論文名稱: 電磁式微面鏡控制系統之設計與實作
Control system design and implementation of electromagnetic micromirror
指導教授: 陳榮順
Chen, Rongshun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 80
中文關鍵詞: 電磁式微面鏡QFTSITO系統
外文關鍵詞: electromagnetic micromirror, QFT, SITO systems
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討電磁式微面鏡之回授控制設計。在設計回授控制器時,必須了解受控系統之輸入與輸出特性,據此建立系統動態模型,以便從事分析與設計控制器。本論文首先推導系統之數學模式,再經由系統鑑別找出系統動態模型之參數值。因是使用電磁力驅動,且其驅動力與輸出呈線性的關係,所以整個系統為一線性系統。
    本文希望藉由轉角回授控制系統增進電磁式微面鏡扭轉掃描的穩定度及準確度,進而減低電磁式微面鏡應用於投影時的影像失真,並且經由實作與所設計之回授控制系統相互驗證。在控制系統之設計上,考量因製程及操作所產生的系統參數之不確定性,利用量化回授理論設計穩健之回授控制器,其理論確保所設計閉迴路在系統參數之不確定性下之穩定性和系統性能。此外,參考輸入頻率為元件的共振頻,且為一極高之操作頻率,因此使硬體頻寬限制成為另一項障礙。
    另一方面,在設計雙軸微面鏡控制系統時,系統屬於單輸入、雙輸出的形式,所以結合Freudenberg於文獻中對SITO 系統設計準則與QFT的設計方法,完成控制系統的設計。此控制系統不但有效減小微面鏡之兩軸向間的耦合,消除系統不確定性及外界干擾,達到追蹤之功能。


    第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 6 1.3 本文大綱 8 第二章 系統架構與系統動態模型分析 9 2.1 電磁式微面鏡之作用力 9 2.2 動態模型分析 12 2.2.1 電磁式微面鏡動態模型 12 2.2.2 單軸電磁式微面鏡系統鑑別 15 2.2.3 雙軸電磁式微面鏡系統鑑別 20 第三章 控制器設計與模擬 25 3.1 單軸微鏡面控制器設計 25 3.1.1 LQR控制器設計 25 3.1.2 QFT控制器設計 28 3.2 單軸模擬結果 32 3.2.1 LQR控制器模擬 32 3.2.2 QFT控制器模擬 35 3.2.3 LQR和QFT控制器的比較 37 3.3 雙軸微面鏡控制器設計 39 3.4 雙軸模擬結果 55 3.4.1 外環模擬結果 55 3.4.2 內環模擬結果 57 第四章 實驗結果與討論 60 4.1 實驗架構 60 4.2 單軸微面鏡控制實驗結果 63 4.3 雙軸微面鏡控制實驗結果 66 4.3.1 外環控制實驗結果 66 4.3.2 內環控制實驗結果 68 第五章 結論與未來工作 71 5.1 結論 71 5.2 未來工作 72 參考文獻..... 74

    [1] H. Miyajima and N. Asaoka “A MEMS Electromagnetic Optical Scanner for a Commercial Confocal Laser Scanning Microscope,” Journal of Micro ElectroMechanical Systems, vol. 12, pp. 243-251, no. 3, 2003.
    [2] C. H. Ji and Y. K. Kim, “Electromagnetic Micromirror Array With Single-Crystal Silicon Mirror Plate and Aluminum Spring,” Journal of Lightwave Technology, vol. 21, pp. 5841-5847, no. 3, 2003.
    [3] N. Asada, H. Matsuki, K. Minami, and M. Essashi, “Silicon Micromachined Two-dimensional Galvano Optical Scanner, ” IEEE Transactions on Magnetics, vol. 30, pp. 4647-4649, 1994.
    [4] H. A. Yang and W. Fang, “A Novel Coil-less Lorentz Force 2D Scanning Mirror Using Eddy Current,” the 19th International Conference on IEEE Micro ElectroMechanical Systems, Istanbul, Turkey, Jan. 22-26, pp. 774-777, 2006.
    [5] 湯宗霖, ”利用靜磁力與勞侖茲力驅動雙軸循序掃描面鏡,” 國立清華大學碩士論文, 2007.
    [6] H. Urey, “Torsional MEMS Scanner Design for High Resolution Display Systems,” Proc. SPIE, vol. 4773, pp. 27-37, 2002.
    [7] C. H. Ji, S. H. Ahn, K. C. Song, H. K. Yoon, M. Choi, S. C. Kim, and J.U. Bu, “Dual-Axis Electromagnetic Scanning Micromirror Using Radial Magnetic Field,” the 19th International Conference on IEEE Micro ElectroMechanical Systems, Istanbul, Turkey, Jan. 22-26, pp. 32-35, 2006.
    [8] M. Huja and M. Husak, “Thermal Microactuators for Optical Purpose,” International Conference on Information Technology: Coding And Computing, pp. 137-142, April 2-4, 2001.
    [9] J. Singh, J. H. S. Teo, Y. Xu1, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A Two Axes Scanning SOI MEMS Micromirror for Endoscopic Bioimaging,” Journal of Micormechanics and Microengineering, vol. 18, pp. 025001(1-9), 2008.
    [10] M. G. Harris and D. M. Gibbs, “A piezoelectric Actuated Scanning Mirror System Utilizing a Type one Control Loop,” IEEE Proceedings on Energy and Information Technologies in the Southeast, vol. 3, pp. 1267-1274, 1989.
    [11] M. H. Kiang and D. A. Francis, “Actuated Polysilicon Micromirrors for Raster-scanning Displays,” International Conference on Solid State Sensors and Actuators, vol. 1, pp. 323-326, June 1997.
    [12] H. Schenk, P. Durr, D. Kunze, H. Lakner, and H. Kuck, “An Electrostatically Excited 2D-micro-scanning-mirror with an In-plane Configuration of Driving Electrodes,” the 13th International Conference on IEEE Micro ElectroMechanical Systems, Miyajaki, Japan, pp. 473-478, Jan. 23-27, 2000.
    [13] B. W. Yoo1, J. H. Park, Y. H. Jang, and Y. K. Kim, “A Low-drift, Open-loop Controlled, Single Crystalline Silicon Micromirror with Floating Field-limiting Shields,” Journal of Micormechanics and Microengineering, vol. 18, pp. 035031(1-8), 2008.
    [14] J. C. Tsai, L. C. Lu, W. C. Hsu, C. W. Sun, and M. C. Wu,”Linearization of a Two-axis MEMS Scanner Driven by Vertical Comb-drive Actuators,” Journal of Micormechanics and Microengineering, vol. 18, pp. 015015(1-8), 2008.
    [15] http://www.microvision.com/pico_projector_displays/standalone.html#
    [16] C. Zhang, G. Zhang, and Z. You, “Piezoresistor Design for Deflection Angles Decoupling Measurement of Two-Dimensional MOEMS Scanning Mirror,” Proceedings of the 7th IEEE nternational Conference on Nanotechnology, Hong Kong , Aug. 2 - 5, 2007.
    [17] T. C. Tsai and R. Chen, “A Novel Two-dimensonal Curled-hinge Comb-drive Micromirror Using CMOS-MEMS Fabrication Process,” Conf. Proc. of Asia-Pacific Conference of Transducers and Micro-Nano Technology, Singapore, Jun. 25-28, 2006.
    [18] C. M. Lee and R. Chen, “Angular Position Control of Vertical Comb-drive Micro-mirror Using Capacitive Feedback,” Conf. Proc. of Asia-Pacific Conference of Transducers and Micro-Nano Technology, Singapore, Jun. 25-28, 2006.
    [19] K. M. Liao, Y. C. Wang, C. H. Yeh, and R. Chen, “Closed-loop Adaptive Control for Electrostatically Driven Torsional Micromirrors” Journal of Microlithography, Microfabrication, and Microsystems, vol. 4, no. 4, 2005.
    [20] J. H. Chen, W. Weingartner, A. Azarov, and R. C. Giles, “Tilt-angle Stabilization of Electrostatically Actuated Micromechanical Mirrors Beyond the Pull-in Point,” Journal of Microelectromechanical Systems, vol. 13, no. 6, pp. 988-997, 2004.
    [21] 鐘興宜,”垂直梳狀致動微掃瞄鏡之分析與控制” 國立清華大學動力機械工程系 碩士論文,2004.
    [22] J. C. Chiou, Y. C. Lin and, S. D. Wu, “Closed-loop Fuzzy Control of Torsional Micromirror With Multiple Electrostatic,” IEEE/LEOS Optical Micro ElectroMechanical Systems, pp. 85-86, 2002.
    [23] N. Yazdi, H. Sane, T. D. Kudrle, and C. H. Mastrangelo, “Robust Sliding-mode Control of Electrostatic Torsional Micromirror Beyond The Pull-in Limit,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 2, pp. 1450- 1453, Boston. June 8-12, 2003.
    [24] T. Juneau, K. Unterkofler, T. Seliverstov, S. Zhang, and M. Judy, “Dual-axis Optical Mirror Positioning Using a Nonlinear Closed-loop Controller,” The 12th International Conference on Solid Stale Sensors, Actuators and Microsystems, vol. 1, pp. 560-563, Boston, June 8-12, 2003.
    [25] Y. Zhao, F. E. H. Tay, G. Zhou, and F. S. Chau, “Fast and Precise Positioning of Electrostatically Actuated Dual-Axis Micromirror By Multi-loop Digital Control,” Sensor and Actuators A: Physical, vol. 132, pp. 412-428, 2006.
    [26] S. Pannu, C. Chang, R. S. Muller, and A. P. Pisano, “Closed-loop feedback-control System for Improved Tracking in Magnetically Actuated Micromirrors,” IEEE/LEOS Optical Micro ElectroMechanical Systems, pp. 107-108, 2000.
    [27] Y. Nagatani, T. Fujita, Y. Hashino, and K. Maenaka, “Output Feedback System for MEMS Mirror Control,” Conf. Proc. of Asia-Pacific Conference of Transducers and Micro-Nano Technology, Singapore, Jun. 25-28, 2006.
    [28] Y. Nagatani, T. Fujita, Y. Hashino, and K. Maenaka, “Precise Control of A 2D MEMS Mirror,” Conf. Proc. Of Asia-Pacific Conference of Transducers and Micro-Nano Technology, Taiwan, Jun. 22-25, 2008.
    [29] C. H. Houpis and S. J. Rasmussen, Quantitative Feedback Theory: Fundamentals and Applications, Marcel Dekker, New York, 1999.
    [30] O. Yaniv, Quantitative Feedback Design of Linear and Nonlinear Control Systems, Kluwer Academic Publishers, New York, 1999.
    [31] J. Freudenberg and R. Middleton, “Properties of Single Input, Two Output Feedback systems,” International Journal of Control, vol. 72, no. 16, pp. 1446-1465, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE