簡易檢索 / 詳目顯示

研究生: 廖容蔚
Chih-Huang Lai
論文名稱: 中介層對CoPtCr-SiO2垂直式記錄媒體的影響
Effects of Intermediate Layers on CoPtCr-SiO2 Perpendicular Recording Media
指導教授: 賴志煌
Jung-Wei Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 81
中文關鍵詞: 垂直式記錄媒體中介層
外文關鍵詞: CoPtCr-SiO2, perpendicular recording
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在我們的生活中,硬碟已經成為一項不可或缺的生活必需品之一,且人們對硬碟容量的需求越來越大,提升硬碟的記錄密度已勢在必行。傳統的水平記錄媒體在提升記錄密度時遇到了所謂”超順磁”的極限,我們必須開發新的記錄媒體以提升記錄密度。
    本研究著重於CoPtCr-SiO2 為記錄層的垂直記錄媒體。此垂直記錄媒體的記錄層需要適當的中介層來提升其記錄層的六方晶結構,所以我們一開始先探討以Ta 和 Ru 為主的膜層結構;我們利用X-光繞射儀(XRD)來分析晶體結構。接著我們探討現今被廣泛使用的Dual-Ru膜層結構,利用震動樣品測磁力計(VSM)來量測其磁性質的表現。最後,我們提出一個代替Ru的材料:MnRu,利用上述的儀器來量測其結構和磁性上的表現。


    Contents Abstract I 致謝 III Contents IV List of Figures VI List of Tables XIII Chapter 1 Introduction 1 Motivation 2 Outline of the Thesis 3 Chapter 2 Background 4 2.1 Principles of Perpendicular Recording 4 2.1.1 Introduction 4 2.1.2 Basic Concepts of Perpendicular Recording 5 2.1.3 Typical Writing Process of PMR 6 2.1.4 Required Magnetic Properties of High Density PMR [2] 7 2.2 Layer Structures of PMR 9 2.2.1 Adhesion Layer 9 2.2.2 Soft Magnetic Underlayer 9 2.2.3 Intermediate Layer 10 2.2.4 Recording Layer 12 2.2.5 Capping Layer 13 2.3 Magnetic Recording Layer and Intermediate Layer 13 2.3.1 Granular CoPtCr-SiO2 Recording Layer 13 2.3.2 Intermediate Layer 20 2.4 The Origin of Noise of the PMR 31 2.4.1 The Soft Underlayer [34] 31 2.4.2 The Recording Layer 32 Chapter 3 Experimental 39 3.1 Experimental Flow Chart 39 3.2 Ultra-High Vacuum Sputtering System (UHV) 39 3.3 Analysis Technique 41 3.3.1 Vibrating Sample Magnetometer (VSM) 41 3.3.2 Perpendicular Magneto-Optical Kerr Effect Meter (PMOKE) 42 3.3.3 Atomic Force Microscopy (AFM) 43 3.3.4 X-Ray Diffraction (XRD) 44 3.3.5 Transmission Electron Microscope (TEM) 45 3.4 Read and Write (R/W) Test 46 Chapter 4 Results and Discussion 47 4.1 Current Full-Stack Perpendicular Recording Media 47 4.2 Improvement on the Intermediate Layers 49 4.2.1 Ta/Ru Intermediate Layers 49 4.2.2 Effect of NiW and Pt 54 4.2.2 Dual Ru Intermediate Layers 57 4.2.3 MnRu Intermediate Layer 69 Chapter 5 Summary 73 References 74   List of Figures FIGURE 1- 1 THE WRITING PROCESS OF THE PMR FILM 2 FIGURE 2- 1 ILLUSTRATION OF THE MAGNETIZATION AND THE DEMAGNETIZATION FIELD 5 FIGURE 2- 2 ILLUSTRATIONS OF THE LONGITUDINAL MEDIA AND THE PERPENDICULAR MEDIA 5 FIGURE 2- 3 WRITING PROCESS IN (A) LONGITUDINAL AND (B) PERPENDICULAR RECORDING 6 FIGURE 2- 4 COMPARISONS OF THE ANISOTROPY FIELD OF VARIOUS RECORDING 7 FIGURE 2- 5 THE HYSTERESIS LOOP OF PMR WITH DIFFERENT PARAMETERS 8 FIGURE 2- 6 THE FILM STRUCTURES OF PERPENDICULAR RECORDING MEDIUM 9 FIGURE 2- 7 ILLUSTRATION OF EPITAXIAL GROWTH OF RU AND RECORDING LAYER ON FCC STRUCTURE [2] 11 FIGURE 2- 8 HIGH-RESOLUTION TEM IMAGE OF 16NM THICK COPTCR-SIO2 MAGNETIC LAYER [19] 14 FIGURE 2- 9 DEPENDENCE OF KU OF THE COPTCR-SIO2 MEDIA ON THE MAGNETIC LAYER THICKNESS [19] 14 FIGURE 2- 10 DEPENDENCE OF HC AND MR/MS OF THE COPTCR-SIO2 MEDIA ON THE MAGNETIC LAYER THICKNESS [19] 15 FIGURE 2- 11 VALUES OF COERCIVITY HC AS A FUNCTION OF SIO2 CONTENT FOR COPTCR-SIO2 MEDIA WITH VARIOUS FILM THICKNESS [20] 15 FIGURE 2- 12 TEM BRIGHT FIELD IMAGES OF COPTCR-SIO2 MEDIA WITH VARIOUS SIO2 CONTENTS [20] 16 FIGURE 2- 13 VALUES OF KUV/KBT AS A FUNCTION OF SIO2 CONTENT FOR MEDIA WITH VARIOUS FILM THICKNESS [20] 16 FIGURE 2- 14 VALUES OF KU FOR {[CO90CR10]80PT20}100-Z-(SIO2)Z MEDIA AS A FUNCTION OF SIO2 CONTENT [20] 17 FIGURE 2- 15 TEM BRIGHT FIELD IMAGES OF COPTO FILMS. OXYGEN TO CO AVERAGE CONTENT RATIOS WERE (A) 6.7% (B) 14% (C) 24% [21] 17 FIGURE 2- 16 THE TEM BRIGHT FIELD IMAGE OF COPTCRO MAGNETIC LAYER[22] 18 FIGURE 2- 17 TEM IMAGES FOR THE MEDIA WITH 10 (TOP), 15(MIDDLE), AND 21(BOTTOM) AT% OXYGEN[23] 19 FIGURE 2- 18 HC AND MS DEPENDENCE ON OXYGEN CONTENT FOR CO-CR-PT-SI-O PMR MEDIA. SELECTED VSM HYSTERESIS LOOPS ARE SHOWN AS WELL.[23] 20 FIGURE 2- 19 DEPENDENCE OF PERPENDICULAR HYSTERESIS CURVES FOR SAMPLES WITH RU LAYERS DEPOSITED AT 5, 10, AND 20MTORR 21 FIGURE 2- 20 SUFACE MORPHOLOGIES OF THE RU FILMS DEPOSITED AT DIFFERENT WORKING PRESSURE 21 FIGURE 2- 21 CROSS-SECTIONAL TEM IMAGE OF A 16.7NM THICK COCRPT-SIO2 MAGNETIC FILM DEPOSITED ON THIN DEVELOPED (RU2/RU1) UNDERLAYER OF 11.9 NM THICKENSS [24] 23 FIGURE 2- 22 COMPARISON OF COERCIVITY DEPENDENCES ON RU UNDERLAYER THICKNESS [24] 23 FIGURE 2- 23 COMPARISON OF RECORDING PERFORMANCE FOR MONOPOLE HEAD OF MEDIA WITH DIFFERENT RU UNDERLAYER [24] 23 FIGURE 2- 24 STRUCTURE OF PERPENDICULAR RECORDING MEDIUM THAT USES NUCLEATION CONTROL SN LAYER (INDICATED BY ARROW) [28] 24 FIGURE 2- 25 GRAIN SIZE DISTRIBUTION OF THE IL2 LAYER PREPARED WITHOUT AND WITH THE NUCLEATION CONTROL SN LAYER [28] 24 FIGURE 2- 26 PLAN-VIEW TEM IMAGES OF THE IL2 LAYER PREPARED 25 FIGURE 2- 27 (A) SCHEMATIC OF MEDIA LAYER STRUCTURE (B) CROSS-SECTION TEM IMAGE [30] 26 FIGURE 2- 28 GRAIN SIZE DISTRIBUTIONS OF CO GRAINS IN MEDIA DEPOSITED ON RU90CR10 LAYERS WITHOUT OXYGEN AND OXYGEN [31] 27 FIGURE 2- 29 DEPENDENCE OF HC (SOLID LINE) AND SQ (BROKEN LINE) ON CR CONTENT OF NMIL WITH THE RECORDING MEDIA WITH PT-CR NMIL [32] 28 FIGURE 2- 30 CROSS-SECTIONAL TEM IMAGES OF THE PMR FILMS WITH (A) PT AND (B) PT-CR NMILS. RIGHT FIGURES SHOW SADPS [32] 28 FIGURE 2- 31 COMPARISON OF LAYER STRUCTURES OF RECORDING MEDIA WITH (A) THE CONVENTIONAL INTERMEDIATE LAYER DESIGN AND (B) THE MAGNETIC INTERMEDIATE LAYER DESIGN [33] 29 FIGURE 2- 32 COERCIVITY AND △Θ50 OF HCP (00.2) PEAKS OF COCRPT-SIO2 LAYERS FOR DIFFERENT THICKNESSES OF THE COCR INTERMEDIATE LAYER [33] 30 FIGURE 2- 33 RECORDING PERFORMANCE OF COCRPT-SIO2 DISKS PREPARED ON TA/COCR/RU1/RU2 WITH DIFFERENT RU1 LAYER THICKNESS AND TA/RU1/RU2 INTERMEDIATE LAYERS (SHOWN AT THE 6NM POSITION IN THE X AXIS) [33] 30 FIGURE 2- 34 A SCHEMATIC OF MAGNETIC BIAS SOFT UNDERLAYER FILM [34] 31 FIGURE 2- 35 NOISE SOURCE MODEL FOR PERPENDICULAR RECORDING MEDIA [3] 32 FIGURE 2- 36 RECORDING DENSITY DEPENDENCE OF SNR AND NORMALIZED MEDIA NOISE [35] 33 FIGURE 2- 37 (A) EXAMPLE OF A SERIES OF RECOIL LOOPS MEASURED ON A COCRPT ALLOY. (B) NORMALIZED DCD REMANENCE CURVES EXTRACTED FROM THE RECOIL LOOPS. THE OPEN CIUCLES AND SOLID CIRCLES ARE REPRESENTED THE UNCORRECTED AND CORRECTED DCD CURVES, RESPECTIVELY. THE OPEN SQUARE REPRESENTED SFD.[37] 36 FIGURE 2- 38 (A) EXAMPLES OF A SERIES OF RECOIL LOOPS (B) THE OPEN CIRCLES REPRESENT IRM CURVE, AND THE SOLID CIRCLES REPRESENT △M OF THE PERPENDICULAR COCRPT FILM MENTIONED ABOVE [36] 37 FIGURE 2- 39 THICKNESS DEPENDENCE OF THE △M FOR THE COCRPT ALLOY[38] 38 FIGURE 2- 40 △M DEPENDENCE OF THE EFFECTIVE DEMAGNETIZATION FACTOR (SOLID LINE) AND THE SFD (DASHED LINE)[38] 38 FIGURE 3- 1 THE UHV SPUTTERING SYSTEM 40 FIGURE 3- 2 THE TRANSFER MANIPULATOR IN THE LOADING CHAMBER 40 FIGURE 3- 3 THE PICTURE OF VSM 41 FIGURE 3- 4 THE SCHEME DIAGRAM OF VSM 42 FIGURE 3- 5 THE SCHEME DIAGRAM OF PMOKE 43 FIGURE 3- 6 THE SCHEME DIAGRAM OF AFM 44 FIGURE 3- 7 THE SCHEME DIAGRAM OF XRD INSTRUMENT 45 FIGURE 3- 8 STANDARD POST-PROCESSING OF COMMERCIAL DISK 46 FIGURE 4- 1 XRD PATTERNS OF TA/COPTCR-SIO2/RU/PT/TA/SUB. 47 FIGURE 4- 2 HYSTERESIS LOOP OF THE FULL-STACK PERPENDICULAR RECORDING MEDIA 48 FIGURE 4- 3 (A) PLANE VIEW TEM IMAGE AND (B) CROSS-SECTION TEM IMAGE OF THE FULL-STACKED COPTCR-SIO2 PERPENDICULAR RECORDING MEDIA 48 FIGURE 4- 4 GRAIN SIZE DISTRIBUTION OF COPTCR-SIO2LAYER 48 FIGURE 4- 5 XRD PATTERNS OF TA/RU/TA/SUB. WITH DIFFERENT DEPOSITION POWER OF THE BOTTOM TA LAYER 50 FIGURE 4- 6 ROCKING CURVES OF RU (00.2) PEAKS OF SAMPLES WITH TA LAYERS DEPOSITED BY DIFFERENT POWERS. 51 FIGURE 4- 7 THE FWHM OF RU HCP(0002) PEAKS AS A FUNCTION OF DIFFERENT DEPOSITION POWER OF TA LAYER 51 FIGURE 4- 8 XRD PATTERNS OF TA/RU/TA/SUB. WITH DIFFERENT TA LAYER THICKNESS 52 FIGURE 4- 9 ROCKING CURVES OF THE RU HCP(00.2) TEXTURE OF SAMPLES WITH DIFFERENT TA LAYER THICKNESS 53 FIGURE 4- 10 THE FWHM OF RU (00.2) PEAKS PLOTTED AS A FUNCTION OF TA LAYER THICKNESS (NM) 53 FIGURE 4- 11 THE PHASE DIAGRAM OF NIW 55 FIGURE 4- 12 THE Θ-2Θ SCAN RESULTS OF THE PMR FILMS WITH (A) NIW INTERMEDIATE LAYER AND (B) PT INTERMEDIATE LAYER 55 FIGURE 4- 13 THE HYSTERESIS LOOPS OF THE FILMS WITH PT INTERMEDIATE LAYER AND NIW INTERMEDIATE LAYER, RESPECTIVELY 56 FIGURE 4- 14 THE THORNTON DIAGRAM [48] 57 FIGURE 4- 15 XRD PATTERNS OF THE FILMS WITH DIFFERENT TOP RU LAYERS DEPOSITED BY DIFFERENT POWERS 58 FIGURE 4- 16 ROCKING CURVES OF (A) THE RU (00.2) PEAKS AND (B) THE CO (00.2) PEAKS OF THE FILMS WITH DIFFERENT TOP RU LAYERS DEPOSITED BY DIFFERENT POWERS 59 FIGURE 4- 17 △Θ50 OF RU AND COPTCR-SIO2 (00.2) PEAKS AS A FUNCTION OF THE DEPOSITION POWER OF THE TOP RU LAYER 59 FIGURE 4- 18 HYSTERESIS LOOPS OF COPTCR-SIO2 FILMS WITH RU LAYERS DEPOSITED BY DIFFERENT DEPOSITION POWER 61 FIGURE 4- 19 COERCIVITY OF COPTCR-SIO2 MEDIA AS A FUNCTION OF THE DEPOSITION POWER OF THE TOP RU LAYER 61 FIGURE 4- 20 Α VALUE AS A FUNCTION OF THE DEPOSITION POWER OF THE TOP RU LAYER 61 FIGURE 4- 21 XRD PATTERNS OF COPTCR-SIO2 FILMS WITH DIFFERENT BOTTOM RU LAYER THICKNESS 63 FIGURE 4- 22 ROCKING CURVES OF RU AND CO (0002) PEAKS AS A FUNCTION OF THE BOTTOM RU LAYER THICKNESS 63 FIGURE 4- 23 HYSTERESIS LOOPS OF THE FILMS WITH DIFFERENT BOTTOM RU LAYER THICKNESS 64 FIGURE 4- 24 HC AS A FUNCTION OF THE BOTTOM RU LAYER THICKNESS 64 FIGURE 4- 25 XRD PATTERNS OF THE FILMS WITH DIFFERENT THICKNESS RATIO OF THE BOTTOM RU LAYER THICKNESS TO THE TOP RU LAYER THICKNESS 65 FIGURE 4- 26 ROCKING CURVES OF CO HCP(00.2) PEAKS OF FILMS WITH DIFFERENT THICKNESS RATION OF THE BOTTOM RU LAYER TO THE TOP RU LAYER 66 FIGURE 4- 27 △Θ50 OF COPTCR-SIO2 HCP(00.2) PEAKS AS A FUNCTION OF THE BOTTOM RU LAYER THICKNESS 66 FIGURE 4- 28 HYSTERESIS LOOPS OF THE FILMS WITH DIFFERENT THICKNESS RATIO OF THE BOTTOM RU LAYER THICKNESS TO THE TOP RU LAYER THICKNESS 68 FIGURE 4- 29 Α VALUES AS A FUNCTION OF THE BOTTOM RU LAYER THICKNESS 68 FIGURE 4- 30 HC AS A FUNCTION OF THE BOTTOM RU LAYER THICKNESS 68 FIGURE 4- 31 THE MNRU PHASE DIAGRAM 69 FIGURE 4- 32 THE CRYSTAL STRUCTURE OF MNRU. THE ARROWS MEAN THE DISORDER MAGNETIZATION OF MN. 70 FIGURE 4- 33 THE Θ-2Θ XRD SCANS OF THE FILMS WITH MNRU INTERMEDIATE LAYER AND WITH PURE RU LAYER, RESPECTIVELY 71 FIGURE 4- 34 THE HYSTERESIS LOOPS OF THE FILMS WITH DIFFERENT MNRU LAYERS AND WITH RU LAYER ONLY, RESPECTIVELY 72   List of Tables TABLE 2. 1 LIST OF THE INTERMEDIATE LAYERS AND THE RECORDING LAYERS 11 TABLE 2. 2 COMPARISONS OF DIFFERENT PERPENDICULAR MEDIA [18]. 12 TABLE 2. 3 MAGNETIC PROPERTIES OF COCRPTO MEDIA WITH RU AND RU-OXIDE ILS [30] 26 TABLE 4. 1 THE COERCIVITY, NUCLEATION FIELD AND SQUARENESS OF THE HYSTERESIS LOOPS OF THE PMR FILMS WITH THE PT INTERMEDIATE LAYER AND THE NIW INTERMEDIATE LAYER, RESPECITVELY 56 TABLE 4. 2 THE COERCIVITY AND SQUARENESS OF THE FILMS WITH DIFFERENT INTERMEDIATE LAYERS 72

    [1] S. Iwasaki and K. Takemura, “An analysis for the circular mode magnetization in short wavelength,” IEEE Trans. Magn., 11 (1975) 1173
    [2] S. N. Piramanayagam, “Perpendicular recording media for hard disk drives,”J. Appl. Phys. 102, 011301 (2007)
    [3] K. Ouchi and N. Honda, “Overview of Latest Work on Perpendicular Recording Media,” IEEE Trans. Magn., 36 (2000) 16
    [4] S. H. Charap et al., “Thermal Stability of Recorded Information at High Densities,” IEEE Trans. Magn., 33 (1997) 978
    [5] Y. Honda et al., “Effect of soft magnetic underlayer on magnetization microstructure of perpendicular thin film media,” IEEE Trans. Magn., 36 (2000) 2399
    [6] J. Ariake et al., “Preparation of double-layered magnetic perpendicular media for fine magnetic structure,” IEEE Trans. Magn., 36 (2000) 2411
    [7] M. Zheng et al., “SNR improvement of granular perpendicular media,” IEEE Trans. Magn., 39 (2003) 1919
    [8] C. Chang et al., “Measurements and Modeling of Soft Underlayer Materials for Perpendicular Magnetic Recording,” IEEE Trans. Magn., 38 (2002) 1637
    [9] C. H. Lai, R. F. Jiang, “Biased FeTaC(N) soft underlayer for perpendicular media,” J. Appl. Phys. 93. 8155 (2003)
    [10] M. Miura et al., “Annealing Behavior of Mangetic-anisotropy in CoNBZr Films,” IEEE Trans. Magn., 24 (1988) 2215
    [11] M. Futrmoto et al., “Microstructure and Magnetic-Properties of CoCr Thin-Films Formed on Ge Layer,” IEEE Trans. Magn., 21 (1985) 1426
    [12] Y. Hirayama, “Ultrathin intermediate template layer for perpendicular recording,” IEEE Trans. Magn., 39 (2003) 2282
    [13] Y. Hirayama, “Development of high resolution and low noise single-layered perpendicular recording media for high density recording,” IEEE Trans. Magn., 33 (1997) 996
    [14] H. Uwazumi et al., “Recording performance of CoCrPt-(Ta, B)/TiCr perpendicular recording media,” IEEE Trans. Magn., 37 (2001) 1595
    [15] A. G. Roy et al., “Seed-layer effect on the microstructure and magnetic properties of Co/Pd multilayers,” J. Appl. Phys. 89, 7531 (2001)
    [16] N. Honda et al., “High coercivity in Co-Cr films for perpendicular recording prepared by low-temperature sputter-deposition,” IEEE Trans. Magn., 30 (1994) 4023
    [17] J. K. Park et al., “Optimization of Ru intermediate layer in CoCr-based perpendicular magnetic recording media¬,” phys. stat. sol. (a) 201 (2004) 1763
    [18] Yu-Yi Laio, “Investigation of CoPtCr-SiO2 Perpendicular Magnetic Recording Media,”the thesis research from the Advanced Storage Thin Film Lab at the National Tsing Hua University, Taiwan
    [19] T. Oikawa et al., “Microstructure and Magnetic Properties of CoPtCr-SiO2 Perpendicular Media¬,” IEEE Trans. Magn., 38 (2002) 1976
    [20] Y. Inaba et al., “Optimization of the SiO2 Content in CoPtCr-SiO2 Perpendicular Recording Media for High-Density Recording¬,” IEEE Trans. Magn., 40 (2004) 2486
    [21] Takashi HIKOSAKA et al., “Oxygen Effect on the Microstructure and Magnetic Properties of Binary CoPt Thin Films for Perpendicular Recording,” IEEE Trans. Magn., 30 (1994) 4026
    [22] Soichi Oikawa et al, “High Performance CoPtCrO Single Layered Perpendicular Media with No Recording Demagnetizatio,” IEEE Trans. Magn., 36 (2000) 2393
    [23] M. Zheng et al., “Role of Oxygen Incorporation in Co-Cr-Pt-Si-O Perpendicular Magnetic Recording Media,” IEEE Trans. Magn., 40 (2004) 2498
    [24] Ryoichi Mukai, Takuya Uzumaki, and Atsushi Tanaka, “Signal-to-media-noise ratio improvement of CoCrPt-SiO2 granular perpendicular media by stacked Ru underlayer,”J. Appl. Phys. 97, 10N119 (2005)
    [25] Ryoichi Mukai, Takuya Uzumaki, and Atsushi Tanaka, “Microstructure Improvement of Thin Ru Underlayer for CoCrPt-SiO2 Granular Perpendicular Media,”IEEE Trans. Magn., 41 (2005) 3169
    [26] J. Z. Shi, S. N. Piramanayagam, C. S. Mah, H. B. Zhao, J. M. Zhao, and Y. S. Kay, “Influence of dual-Ru intermediate layers on magnetic properties and recording performance of CoCrPt-SiO2 perpendicular recording media,”Appl. Phys. Lett. 87, 222503 (2005)
    [27] S. H. Park, S. O. Kim, and T. D. Lee, “Effect of top Ru deposition pressure on magnetic and microstructural properties of CoCrPt-SiO2 media in two-step Ru layer,”J. Appl. Phys. 99, 08E701 (2006)
    [28] S. N. Piramanayagam and K. Srinivasan, “Sub-6-nm grain size control in polycrystalline thin films using synthetic nucleation layer,”Appl. Phys. Lett. 91, 142508 (2007)
    [29] H. Uwazumi, K. Ennomoto, Y, Sasaki, S. Takenoiri, T. Oikawa, and S. Watanabe, “CoPtCr-SiO2 granular media for high-density perpendicular recording,”IEEE Trans. Magn., 39 (2003) 1914
    [30] Unoh Kwon, Robert Sinclair, E. M. T. Velu, Sudhir Malhotra, and Gerado Bertero, “Ru/Ru-Oxide Interlayers for CoCrPtO Perpendicular Recording Media,”IEEE Trans. Magn., 41 (2005) 3193
    [31] S. N. Piramanayagam et al.,“Grain size reduction in CoCrPt-SiO2 perpendicular recording media with oxide-based intermediate layers,”Appl. Phys. Lett. 89, 162504 (2006)
    [32] Atsushi Hashimoto et al., “Improvement of magnetic properties of granular perpendicular recording media by using a fcc nonmagnetic intermediate layer with stacking faults,”Appl. Phys. Lett. 89, 262508 (2006)
    [33] S. N. Piramanayagam, H. B. Zhao, J. Z. Shi, and C. S. Mah, “Advanced perpendicular recording media structure with a magnetic intermediate layer,”Appl. Phys. Lett. 88, 092501 (2006)
    [34] D. Litvinov et al., “Recording physics of perpendicular media: soft underlayers,” J. Magn. Magn. Mater. 232 (2001) 84
    [35] S. Takenoiri et al., “Magnetic Properties, Magnetic Cluster Size, and Read-Write Performance of CoPtCr-SiO2 Perpendicular Recording Media ¬,” IEEE Trans. Magn., 39 (2003) 2279
    [36] René J. M. van de Veerdonk et al., “Switching Field Distributions and ΔM Measurements for Perpendicular Media,” IEEE Trans. Magn., 38 (2002) 2450
    [37] René J. M. van de Veerdonk et al., “Determination of Switching Field Distribution for Perpendicular Recording Media,” IEEE Trans. Magn., 39 (2003) 590
    [38] X. W. Wu et al., “△M Study of Perpendicular Recording Media,” J. Appl. Phys. 93, 6760(2003)
    [39] E. P. Wohlfarth, “Relations between Different Modes of Acquisition of the Remanent Magnetization of Ferromagnetic Particles,” J. Appl. Phys. 29, 595(1958)
    [40] J. K. Park et al., “Optimization of Ru intermediate layer in CoCr-based perpendicular magnetic recording media¬,” phys. stat. sol. (a) 201 (2004) 1763
    [41] T. Keitoku et al., “Preparation condition of Co-Pt-Cr-SiO2 films with high coercivity,” J. Magn. Magn. Mater. 287 (2005) 172.
    [42] W. K. Shen et al., “Reduction of Ru Underlayer Thickness for CoCrPt-SiO2 Perpendicular Recording Media,” IEEE Trans. Magn. 42 (2006), 2381.
    [43] T. Hikosaka, “Perpendicular Magnetic Recording medium and Magnetic Read/Write Apparatus,” US Patent No. 006,670,056 B2 (Dec. 2003)
    [44] K. Sasao et al., “Concentration Dependence of the Neel Temperature ofγ-phase Mn100-xRux Alloys,” IEEE Trans Magn. 35 (1999), 3910
    [45] J. K. Park et al., “Optimization of Ru intermediate layer in CoCr-based perpendicular magnetic recording media¬,” phys. stat. sol. (a) 201 (2004) 1763
    [46] T. Keitoku et al., “Preparation condition of Co-Pt-Cr-SiO2 films with high coercivity,” J. Magn. Magn. Mater. 287 (2005) 172.
    [47] W. K. Shen et al., “Reduction of Ru Underlayer Thickness for CoCrPt-SiO2 Perpendicular Recording Media,” IEEE Trans. Magn. 42 (2006), 2381.
    [48] John A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol., Vol. 11, No. 4 (1974), 666.
    [49] T. Hikosaka, “Perpendicular Magnetic Recording medium and Magnetic Read/Write Apparatus,” US Patent No. 006,670,056 B2 (Dec. 2003)
    [50] K. Sasao et al., “Concentration Dependence of the Neel Temperature of γ-phase Mn100-xRux Alloys,” IEEE Trans Magn. 35 (1999), 3910.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE