研究生: |
廖冠勛 Liao, Kuan-Hsun |
---|---|
論文名稱: |
應用焦耳熱效應之熱阻式應變感測元件 A Thermoresistive Strain Sensing Device Based on Joule Heating Effect |
指導教授: |
羅丞曜
Lo, Cheng-Yao |
口試委員: |
廖英志
Liao, Ying-Chih 莊承鑫 Chuang, Cheng-Hsin 陳錦泰 Chen, Chin-Tai 林承忠 Lin, Cheng-Chung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 177 |
中文關鍵詞: | 卷對卷製程 、紅外線 、焦耳熱 、感測器 、應變 、聚萘二甲酸乙二醇酯 、噴墨印刷 、熱阻 |
外文關鍵詞: | Inkjet printing, infrared, Joule heating, polyethylenenaphthalate, roll-to-roll, sensor, strain, thermoresistive |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種焦耳熱應變感測元件,提供小區域形變定量及定位之技術,監測因形變導致之焦耳熱能差異並透過觀察表面小區域溫度分布獲取應變解析。針對不同量測精度及測定區範圍,透過微影及噴墨印刷製程製作感測元件,並藉由金屬材料選用、基材適用性、能量估算匹配及設計理論之實踐,證明不論是正向、負向彎曲之曲面或不均勻拉伸之區域皆能藉此技術呈現形變程度,且能針對全測定區進行應變解析。
研究初期經力學理論推導配合有限元素多重物理量耦合理論,對熱、電及受力進行分析,設計合適的元件及匹配的電流電壓,而後分別選擇機械性質良好之金屬利用微影製程製作感測元件。噴印製程採適應性良好奈米銀墨水噴製,並透過調變壓電元件供墨波形、噴頭施加電壓、噴頭溫度、墨滴間距、基板溫度、噴印高度及墨水與基材間作用力等,實現設計之應變感測元件。針對小區域應變及不均勻拉伸則分別利用微影元件與噴墨印刷元件進行交叉驗證比對,結果證明了小區域應變解析及全測定區應變分布監測可行性。除監測透過自然彎曲產生均勻形變之元件外,本研究亦利用微影元件進行小曲率半徑之監測,於塑性變形區域實踐了小曲率半徑之應變監控。噴印元件部分利用客製化夾治具模擬卷對卷軸偏時不均勻應變,於塑性變形區間進行量測,並藉由溫度應變資料庫比對,證明夾具所產生之應變對應溫度與數據庫相符,亦印證了噴印感測元件於塑性變形區間之適用性。
製程中採閃光燒結技術取代熱燒結,預先為與卷對卷製程垂直整合做準備,並透過覆蓋光固化樹脂達到提升感測靈敏度及降低雜訊之成效。透過此研究設計之系統將可實踐軟性電子於卷對卷製程軸偏之連續監測,可有效杜絕印刷滾軸偏差,提升印刷品質及良率。
A thermoresistive strain sensor composed of a meandering resistor and a substrate is realized by the roll-to-roll (R2R) manufacturing-compatible procedures in this study. The sensing principles of the thermoresistive strain sensor are based on Joule heating and infrared (IR) inspection. At the beginning of this research, the mechanic theory from the finite element multi-physical quantity coupling theory was confirmed. The operating conditions of heat, electricity, and force of the device, and appropriate operating current and voltage were taken into account. A serpentine metal line is patterned on a polymer substrate to form the strain sensor in accordance with thermoresistive behavior, and the strain sensor is subjected to either effective current or voltage to induce the Joule heating on the resistor. An infrared (IR) detector is used to monitor the strain-induced temperature difference and the minimal detectable bending radius is 0.87 mm with a gauge factor (GF) of 146. The proposed design eliminates the ambiguity of judgement compared with conventional resistive strain sensors, where resistance is the only physical factor. Moreover, consecutive operations of sensor patterning by an inkjet printing, material stabilization by flashlight sintering, thermal emission by Joule heating, and strain evaluation by IR inspection were successfully demonstrated by an in-line method, which indicated strains distributed in an arbitrary area of a transparent substrate. The thermoresistive strain sensor and its detection method can be applied in the evaluations of symmetric tension and compression to various extents, regardless of the form of power. In addition, the effectiveness of the detection method on off-axis or asymmetric substrate deformation was examined. Besides its tunable sensitivity and gauge factor for operational flexibility, the high sensitivity and the largest gauge factor existed. This study revealed that the device can be successfully used to analyze the local strains and perform the precise measurement.
[1] R. Finn, “Simmons and the Strain Gage,” Engineering & Science , pp. 19-23(1986).
[2] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-Like Electronic Displays: Large-area rubberstamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proceedings the National Academy of Sciences of the United States of America, vol. 98, pp. 4835-4840 (2001).
[3] Taiwanese research institute, “Flexible Paper Speakers on the Way,” IEEE Spectrum, (2009).
[4] A. Ganguly and S. Sar, “Paper Battery-a Promising Energy Solution,” International Journal of Advanced Engineering Research and Studies, vol. 1, pp. 130-133 (2011).
[5] L. Yang, A. Rida and M. Tentzeris, “Design and Development of Radio Frequency Identification (RFID) and RFID-Enabled Sensors on Flexible Low Cost Substrates,” Morgan & Claypool, pp. 11-22 (2009).
[6] M. Pagliaro, G. Palmisano and R. Ciriminna, (2008), “Flexible Solar Cells,” Wiley-VCH.
[7] W. S. Wong and A. Salleo, “Flexible Electronics,” pp. 236-242, Springer.
[8] D. H. Kim, R. Ghaffari, N. Lu and J. A. Rogers, “Flexible and Stretchable Electronics for Biointegrated Devices,” Annual Review of Biomedical Engineering, vol. 14, pp. 113-128 (2012).
[9] https://www.ube-ind.co.jp/ube/jp/index.html
[10] http://www.teijindupontfilms.jp/english/product/hi_film.html
[11] C. Lee, H. Kang and K. Shin, “Advanced Taper Tension Method for the performance improvement of a roll-to-roll printing production line with a winding process,” International Journal of Mechanical Sciences, vol. 59, pp. 61-72 (2012).
[12] M. Jiang and E. Gerhard, “A Simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sensors and Actuators A: Physical, vol. 88, 41-46(2001).
[13] Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber bragg grating at 962 nm and its potential in strain sensing,” IEEE Photonics Technology Letters, 22, pp. 1562-1564(2010).
[14] W. C. Sun, C. H. Chu, H. C. Chang, B. K. Wu, Y. R. Chen, C. W. Cheng, M. S. Chiu, Y. C. Shen, H. H. Wu, Y. S. Hung, S. L. Chang, M. H. Hong, M. T. Tang and Yu. P. Stetsko, “Determination of three-dimensional interfacial strain -A novel method of probing interface structure with X-ray Bragg-surface diffraction,” Thin Solid Films, pp. 5716-5723(2007).
[15] D. Post, (1991), “Moire Interferometry: Advances and Applications,” pp. 276-280.
[16] K. S. Yen, M. M. Ratnam and H. M. Akil, “Measurement of flexural modulus of polymeric foam with improved accuracy using moire´ method,” Polymer Testing, vol. 29, pp. 358-368(2012).
[17] W. Thomson, “On the Electro-dynamic Qualities of Metals,” Proceedings of the Royal Society of London, vol. 8, pp. 546-550(1857).
[18] O. J. Gregory, X. Chen, E. E. Crisman, “Strain and temperature effects in indium–tin-oxide sensors,” Thin Solid Films, pp. 5622-5625(2010).
[19] D. Lee, H. P. Hong, M. J. Lee, C. W. Park and N. K. Min, “A prototype high sensitivity load cell using single walled carbon nanotube strain gauges,” Sensors and Actuators A, vol.180, pp. 120-126 (2012).
[20] A. Manbachi and R. S. C. Cobbold, “Development and Application of Piezo- electric Materials for Ultrasound Generation and Detection,” Ultrasound, vol. 19, pp. 187-196(2011).
[21] E. Peiner, A. Tibrewala, R. Bandorf, S. Biehl, H. Luthje and L. Doering, “Micro force sensor with piezoresistive amorphous carbon strain gauge,” Sensors and Actuators A, pp. 75-82(2006).
[22] P. Kullha, O. Babchenko, A. Kromka, M. Husak and K. Haenen, “Design and fabrication of piezoresistive strain gauges based on nanocrystalline diamond layers,” Vacuum, vol. 86, pp. 689-692 (2012).
[23] G. F. Yu, X. Yan, M. Yu, M. Y. Jia, W. Pan, X. X. He, W. P. Han, Z. M. Zhang, L. M. Yud and Y. Z. Long, “Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization,” Nanoscale, pp. 2944-2950(2016).
[24] L. Rayleigh, “On waves propagating along the plane surface of an elastic solid,” Proc. London Math, pp. 1-17(1885).
[25] R. Stoney, B. Donohoe, D. Geraghty and G. E. O’Donnell, “The development of surface acoustic wave sensors (SAWs) for process monitoring,” Procedia CIRP, vol. 1, pp. 569-574(2012).
[26] C. Fu, K. Lee, K. Lee, S. S. Yang, and W. Wang, “A stable and highly sensitive strain sensor based on a surface acousticwave oscillator,” Sensors and Actuators A, vol. 218, pp.80-87 (2014).
[27] M. Suster, J. Guo, W. H. Ko and D. J. Young, “A High-Performance MEMS Capacitive Strain Sensing System,” Journal of Microelectromechanical Systems, vol. 15, NO. 5, pp. 1069-1077(2006).
[28] B. Lenaerts and R. Puers, “Automatic inductan ce compensation for class E driven flexible coils,” Sensors and Actuators A, pp.154-160(2008).
[29] C. S. Shin and M. W. Lin, “An Optical Fiber-Based Curvature Sensor for Endodontic Files Inside a Tooth Root Canal,” IEEE Sensors Journal, vol. 10, NO. 6, pp. 1062-1065(2010).
[30] N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu and H. Fukunaga, “Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor,” Carbon, vol. 48, pp. 680-687(2010).
[31] M. Petersen, U. Heckmann, R. Bandorf , V. Gwozdz, S. Schnabel, G. Bräuer and C. P. Klages, “Me-DLC films as material for highly sensitive temperature compensated strain gauges,” Diamond and Related Materials, vol. 20, pp. 814-818(2011).
[32] S. Burzhuev, A. Dâna and B. Ortac, “Laser synthesized gold nanoparticles for high sensitive strain gauges,” Sensors and Actuators A: Physical , vol. 203, pp. 131-136(2013).
[33] S. H Hwang, H. W. Park, Y. B. Park, M. K. Umb, J. H. Byun and S. Kwon, “Electromechanical strain sensing using polycarbonate-impregnated carbon nanotube-graphene nanoplatelet hybrid composite sheets,” Composites Science and Technology, vol. 89, pp. 1-9(2013).
[34] P. R. Hauptmann, “Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies,” Measurement Science and Technology, vol. 17, no. 3, pp. 459-466(2006).
[35] T. G. Nenov and S. P. Yorrdanow, (1996), “Ceramic Sensors: Technology and Applications,” Technomic Pub Co..
[36] M. Najafi, L. Maleki and A. A. Rafati, “Novel surfactant selective electrochemical sensors based on single walledcarbon nanotubes,” Journal of Molecular Liquids, vol. 159, pp. 226-229(2011).
[37] G. C. Schmidt, M. Bellmann, B. Meier, M. Hambsch, K. Reuter, H. Kempa and A.C. Hübler, “Modified mass printing technique for the realization of source/drain electrodes with high resolution,” Organic Electronics, vol. 11, pp. 1683-1687(2010).
[38] G. P. Crawford, (2015), “Flexible flat panel displays,” John Wiley & Sons, Ltd., pp. 35-55.
[39] T. M. Lee, Y. J. Choi, S. Y. Nam, C. W. You, D. Y. Na, H. C. Choi, D. Y. Shin, K. Y. Kim and K. I. Jung, “Color filter patterned by screen printing,” Thin Solid Films 516, pp. 7875-7880(2008).
[40] F Xue, Z. Liu, Y. Su and K. Varahramyan, “Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors,” Microelectronic Engineering, vol. 83, pp. 298-302(2006).
[41] D. Zielke, A. C. Hübler, U. Hahn, N. Brandt, M. Bartzsch, U. Fügmann, and T. Fischer, “Polymer-based organic field-effect transistor using offset printed source/drain structures,” Applied Physics Letters, vol. 87, pp. 123508(2005).
[42] D. H. Wang, D. G. Choi, K. J. Lee, J. H. Jeong, S. H. Jeon, O O. Park and J. H. Park, “Effect of the ordered 2D-dot nano-patterned anode for polymer solar cells,” Organic Electronics, pp. 285-290(2010).
[43] W. Herschel, “Experiments on the refrangibility of the invisible rays of the sun,” Philosophical Transactions of the Royal Society of London, pp. 284-292 (1800).
[44] J. M. Gere, Timoshenko and P. Stephen, (1997), “Mechanics of Materials,” 4th ed. pp. 1-47, PWS Pub Co.
[45] M. Kumar and Y. Ando, “Carbon Nanotube Synthesis and Growth Mechanism,” Nanotechnology Perceptions, pp.7-28 (2010).
[46] http://en.wikipedia.org/wiki/Polyethylene_naphthalate
[47] http://en.wikipedia.org/wiki/Polyethylene_terephthalate
[48] G. Langer, J. Hartmann, and M. Reichling, “Thermal conductivity of thin metallic films measured by photothermal profile analysis,” Review of Scientific Instruments, vol. 68, pp. 1510-15139(1997).
[49] G. Schoukens, P. Samyn, S. Maddens and T. V. Audenaerde, “T.V. Shrinkage behavior after the heat setting of biaxially stretched poly(ethylene 2,6-naphthalate) films and bottles,” J. Appl. Polym. Sci., vol. 87, pp. 1462-1473 (2003).
[50]http://www.fujifilmusa.com/products/industrial_inkjet_printheads/deposition-products/dmp-2800/
[51] http://www.anapro.com/eng/product/silver_paste.html?pos=3
[52] T. Kumpulainen, J. Pekkanen, J. Valkama, J. Laakso, R. Tuokko and M. M¨antysalo, “Low temperature nanoparticle sintering with continuous wave and pulse lasers,” Optics & Laser Technology vol. 43, pp. 570-576 (2011).
[53] M. L Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanpera, M. Suhonen and H. Seppa, “Electrical Sintering of Nanoparticle Structures,” Nanotechnology, vol. 19, pp. 175201 (2008).
[54] Y. Galagan, E. W.C. Coenen, R. Abbel, T. J. V. Lammeren, S. Sabik, M. Barink, E. R. Meinders, R. Andriessen and P. W.M. Blom “Photonic sintering of inkjet printed current collecting grids for organic solar cell applications,” Organic Electronics, vol. 14, pp. 38-46 (2013).
[55] J. Perelaer, M. Klokkenburg, C. E. Hendriks and U. S. Schubert, “Microwave Flash Sintering of Inkjet-Printed Silver Tracks on Polymer Substrates,” Advanced materials, vol. 21, pp. 4830-4834 (2009).