簡易檢索 / 詳目顯示

研究生: 劉澤鴻
Tse-Hung Liu
論文名稱: 準確的模擬奈米製程電感以協助系統晶片的設計
Accurate Nanometer Inductance Modeling for SoC Designs
指導教授: 張克正
Keh-Jeng Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 50
中文關鍵詞: 晶片電感傳輸線金屬連線自感互感超大型積體電路
外文關鍵詞: on-chip inductance, transmission line, interconnect, self inductance, mutual inductance, VLSI
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,系統晶片設計的發展非常地快速,也越來越複雜,晶圓廠的製造技術也必須配合電路設計的發展,製造技術不斷的演進過程中,許許多多的問題也隨之產生。晶片上的金屬連線將會是以後設計電路的主要瓶頸,晶片上金屬連線所帶來不必要的寄生電阻、寄生電容、寄生電感,將會對整體電路的效能影響非常大。對於以前電路設計者來說,他們只有探討寄生電阻和寄生電容所帶來的效應,可是未來的晶片速度將會持續上升達到數個GHz,此時的寄生電感將會變的很重要,如果不考慮寄生電感時,則在做模擬分析的時候將會失去準確性,進而造成整個晶片壞掉。在這一篇論文中,我們將使用FastHenry當作計算電感的標準,使用不同的傳輸線結構,進而提出ㄧ個方法去建立電感表格。實驗結果發現到電感是呈現單調的變化,因此可以使用內插法或是外插法求出其他不在電感表格內的電感,本論文的電感表格雖然涵蓋多種傳輸線的結構,但是真實的電路中更複雜的傳輸線則可以使用簡易的演算法來逼近,而且誤差值均為負的,本論文也在這方面的應用提出方法並且解釋負的誤差原因。晶片電感表格的建立將會有利於電路設計者去設計重要的電路傳輸線,未來則可以提供更多的傳輸線結構模型的自感與互感給電路設計者使用,並且採用本文尚未探討的90奈米矽晶圓量測資料來証明使用FastHenry來算奈米電感是準確的,例如S參數的量測。


    In recent years, SoC design improves quickly and becomes more and more complex. Since manufacturing technique of fabrication must follow the improvement of circuit design, many problems are generated during this improving progress. One of them is on-chip interconnect induced issue, which is related to parasitic resistance, parasitic capacitance, and parasitic inductance. And it is regarded as future main bottleneck of circuit design due to its bad influence on the performance of global circuit.
    In the past, circuit designers just considered the effects of parasitic resistance and parasitic capacitance. But the speed of chip will achieve several GHz, parasitic inductance will become very important. If we don’t consider the parasitic inductance, we will loose the accuracy while doing simulation and the chip will fail. In this thesis, we will use FastHenry as our standard of inductance simulation, use different structures of transmission line, and propose our method to build inductance table then. We discovered the inductance is monotonic in experiment results. So, we conclude that applying interpolation to calculate the inductance which is not in this inductance table will work in the case. Though there are more complex transmission lines in real circuit, one can use simple algorithm to get simulated inductance with negative errors based on the inductance table here which covers many kinds of transmission line structure. In addition, we also proposed a method on this application and explain why the errors are negative. In conclusion, on-chip inductance table will be useful for circuit designer to design critical transmission line. In the future, we can propose more transmission line structures with self and mutual inductances for circuit designer and use 90nm silicon wafer measurement such as S-parameter to prove FastHenry is accurate in nanometer inductance extraction.

    中文摘要 i Abstract ii 誌謝 iv 目錄 v 圖片列表 vi 表格列表 viii 第1章 簡介 - 1 - 第2章 先前工作 7 2.1 晶片上的金屬連線 7 2.2 晶片上的電感 8 2.3 傳輸線(transmission line)的結構 11 2.4 傳輸線(transmission line)之等效電路 12 第3章 提出的方法 13 3.1 Transmission Line 13 3.2 Interconnect process file 15 3.3 設計流程 16 第4章 實驗結果與分析 19 4.1 實驗模型結構 19 4.2 實體參數 22 4.3 實驗結果與分析 24 4.4 實際應用 28 第5章 結論與未來工作 34 參考文獻 36 附錄1 37 附錄2 46

    [1] David A. Hodges, Horace G. Jackson and Resve Saleh, Analysis and Design of Digital Integrated Circuits, 3r edition, McGraw Hill, July 2003.
    [2] S. Simon Wong, Patrick Yue, and Richard Chang, “On-Chip Interconnect Inductance-Friend or Foe,” Proceedings of the fourth international Symposium on Quality Electronic Design, pp.389-394, 2003.
    [3] Kaustav Banerjee and Amit Mehrotra, “Analysis of On-Chip Inductance Effects for Distributed RLC Interconnects”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,VOL. 21, NO. 8, pp. 904–915, August 2002.
    [4] Yu Cao, Xuejue Huang, Norman H. Chang, Shen Lin, O. Sam Nakagawa and Weize Xie, “Effective On-Chip Inductance Modeling for Multiple Signal Lines and Application to Repeater Insertion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 10, no. 6, pp. 799-805, Dec. 2002.
    [5] Min Xu and Lei He,“An Efficient Model for Frequency-Dependent On-Chip Inductance,” in Proc 2001 Conf. Great Lakes Symp. VLSI, 2001, pp. 115-120.
    [6] M. Kamon, M. J. Tsuk and J. White, “FastHenry: A Multipole-Accelerated 3-D Inductance Extraction Program,” 30th ACM/IEEE Design Automation Conference, 1993, pp. 678-683.
    [7] Synopsys, Raphael Reference Manual Version 2003.09, September 2003.
    [8] Fawwaz T. Ulaby, Fundamentals of applied electromagnetics 2004 Media Edition, 2004.
    [9] Jerry Tallinger and Haris Basit, “Tools for On-Chip Interconnect Inductance
    Extraction,” OEA international, Inc, 2002.
    [10] K.J Chang et al., “Verifying On-Chip Inductance Extraction with Silicon
    Measurement,” EE Times, November 2003.
    [11] Bendik Kleveland, Thomas H. Lee and S. Simon Wong, “50-GHz Interconnect Design in Standard Silicon Technology,” IEEE MTT Symposium, June 1998.
    [12] Yehia Massoud, Steve Majors, Jamil Kawa, Tareq Bustami, Don MacMillen and Jacob White, “Managing On-Chip Inductive Effects,” IEEE Transactions on VLSI System, vol. 10, No.6, December 2002, pp. 789-798.
    [13] F. Huret, E. Paleczny and P. Kennis, “Theoretical Limits for Signal Reflections due to Inductance for On-Chip Interconnections,” SLIP’2000, San Diego, 2000.
    [14] Li-Fu Chang, Keh-Jeng Chang and Charlie Chung-Ping Chen, “In-depth Speed and Accuracy Comparison of Inductance Extraction for SoC Signal Integrity and Tool Integration,” Signal Integrity Track, Santa Clara, California, May 30, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE