簡易檢索 / 詳目顯示

研究生: 江建豪
Chiang, Chien Hao
論文名稱: 肌萎縮性脊髓側索硬化症相關之TDP-43突變蛋白質的結構與生化特性分析
Structural and biochemical properties of the ALS-linked mutations in TDP-43
指導教授: 袁小琀
Yuan, Hanna S.
呂平江
Lyu, Ping Chiang
口試委員: 蕭育源
蕭傳鐙
孫玉珠
蘇士哲
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
中文關鍵詞: 肌萎縮性脊髓側索硬化症TDP-43突變結構漸凍人
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TDP-43為一能與核醣核酸結合的蛋白質,在細胞中具有多重的功能,包含基因轉錄的抑制、轉譯的調節、調控訊息RNA的剪接與運輸。另一方面TDP-43會被蛋白酶切成較小的25 kD 和35 kD片段,進而形成聚合體並在神經細胞中沉積,此現象與多種神經退化性疾病有關,包含肌萎縮性脊髓側索硬化症(漸凍人)。近年來陸續在漸凍人病患中發現帶有近50個TDP-43的胺基酸點突變,然而我們並不清楚這些TDP-43突變,是否會造成蛋白質生化或結構特性上的改變,而與疾病有相關連。這份論文報告中我們試圖純化數個與漸凍人相關的TDP-43點突變蛋白質,來瞭解此蛋白質具有哪些特性上的改變。我們純化了八個TDP-43點突變蛋白質,藉由圓二色光譜儀與螢光儀的實驗,我們發現兩個突變蛋白質D169G與M311V,與野生種TDP-43相比具有較高的熱耐受性。為了探討可能的原因,我們解析了包含D169G突變的RRM1 (RRM1-D169G)區塊與DNA結晶的複合物的晶體結構。我們發現相較於野生種RRM1結構,RRM1-D169G的晶體結構中,G169與T115之間的氫鍵消失,而造成一個轉折區域(Turn6)輕微的移動。配合動力學模擬試驗,進一步發現這個轉折區域的移動,造成RRM1區塊內部形成更緊密的交互作用,因此增加了蛋白質的整體穩定度。我們還發現TDP-43含有D169G突變的蛋白質,與野生種TDP-43相比,較易於被caspase 3蛋白酶分解成約35 kD的片段。在神經細胞中表現的TDP-43 D169G的全長突變蛋白質,也較易被降解成35 kD的片段。根據這些結果,我們建議D169G的突變會使得TDP-43較容易被蛋白酶所降解,並產生了較為穩定的35 kD片段,此片段的增加與蛋白質的堆積與疾病成因密切相關。我們的研究說明了TDP-43蛋白質的穩定度是與疾病相關的一個重要因數,調控TDP-43的穩定度或是蛋白酶降解的速率,可能是一個有效的方式,來防止或治療TDP-43相關的神經退化性疾病。


    TDP-43 is an RNA/DNA-binding protein, playing multiple roles in transcription repression, translation regulation, mRNA splicing and mRNA transport. However, TDP-43 is cleaved into 25-kD and 35-kD C-terminal fragments (TDP-25 and TDP-35) and aggregated in neuronal cells linking to various neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). About 50 mutations in TDP-43 have been identified in ALS patients, but it is unclear why these mutations are linked to protein aggregation and ALS. Here we purified eight ALS-linked TDP-43 mutants and found that two of the mutants, D169G and M311V, had increased thermal stability as measured by circular dichroism and differential scanning fluorimetry. To decipher the structural basis for the increased thermal stability, we determined the crystal structure of the TDP-43 RRM1 domain with D169G mutation (RRM1-D169G) in complex with a single-stranded DNA. We found that a β-turn (Turn6) in RRM1 is slightly shifted due to the loss of a hydrogen bond between G169 and T115 in RRM1-D169G. The molecular dynamic simulation further showed that the D169G increases the hydrophobic interactions in the core of the RRM1 domain, thus enhancing protein stability. Moreover, comparing to the wild type, TDP-43 with D169G mutation was cleaved more efficiently than the wild-type by caspase 3 to yield TDP-35 that may initiate protein accumulation. Consistently, expression of TDP-43 with D169G mutation in Neuro2a cells produced higher level of TDP-35 than that of wild-type protein. Taken together these results provide the structural basis for the increased stability of the TDP-43 D169G mutant, and demonstrate that D169G is more susceptible to proteolytic cleavage by caspase 3 into the stable pathogenic C-terminal 35-kD fragments that can promote protein accumulation and aggregation. Our results suggest that protein stability is an important factor for regulating TDP-43 accumulation and aggregation. Modulation of TDP-43 protein stability and caspase digesting rate could offer an avenue for prevention and treatment of neurodegenerative diseases related to TDP-43 proteinopathy.

    CONTENTS CONTENTS i CONTENT OF TABLES iv CONTENT OF FIGURES v 1. INTRODUCTION 1 1.1 TDP-43 has multiple cellular functions 1 1.1.1 TDP-43 functions as a transcription repressor 1 1.1.2 TDP-43 is a splicing factor 2 1.1.3 TDP-43 regulates the stability of mRNA 3 1.1.4 TDP-43 is a component of the Drosha and Dicer complexes for microRNA biogenesis 4 1.1.5 TDP-43 is involved in mRNA transportation 5 1.2 The domain structure of TDP-43 6 1.2.1 N-terminal domain (NTD) 6 1.2.2 RNA recognition motifs (RRM1and RRM2) 6 1.2.3 C-terminal glycine-rich domain 7 1.2.4 The overall structure of TDP-43 8 1.3 The pathological role of TDP-43 8 1.3.1 TDP-43 is involved in neurodegeneration diseases 8 1.3.2 Frontotemporal Lobar Degeneration (FTLD) 9 1.3.3 Amyotrophic Lateral Sclerosis (ALS) 10 1.3.4 The roles of TDP-25 and TDP-35 11 1.4 Aims of this research 12 2. MATERIALS AND METHODS 14 2.1 Human TDP-43 constructs and site-directed mutagenesis 14 2.2 Expression and purification of recombinant TDP-43 14 2.3 SDS-PAGE and Tricine-SDS-PAGE 15 2.4 Determination of protein concentration 16 2.5 Dynamic light scattering (DLS) 17 2.6 Circular dichroism 17 2.7 Differential scanning fluorimetry 18 2.8 Caspases digestion assays 18 2.9 Crystallization and X-ray data collection 19 2.10 Crystal structure determination and refinement 19 2.11 Molecular dynamics simulation 20 2.12 Cell cultures, Stable cell line generation and protein degradation assays 20 2.13 Statistical analysis 21 2.14 Small angle X-ray scattering (SAXS) and data analysis 22 3. RESULTS 23 3.1 Overexpression and purification of TDP-43 23 3.2 D169G and M311V mutants exhibit increased thermal stability 23 3.3 D169G is more efficiently cleaved by caspase 3 to TDP-35 25 3.4 Overall crystal structure of RRM1-D169G in complex with DNA 26 3.5 Local structural variations of RRM1-D169G as compared to the wild-type RRM1 28 3.6 The D169G mutant has increased hydrophobic core interactions revealed by MD simulations 29 3.7 Increased levels of TDP-35 for D169G mutant by in vivo assays 31 3.8 The role of Cys residues in NTD in protein oligomerization and stability 32 3.9 The oligomer states of NTD determined by SAXS 33 4. DISCUSSION 35 4.1 D169G mutation in TDP-43 produces a more stable protein than wild type 35 4.2 The role of NTD in TDP-43 37 REFERENCES 39 APPENDIX 86 CONTENT OF TABLES Table 1. ALS-linked mutations in human TDP-43. 53 Table2. The primers used for TDP-43 constructs and site-directed mutagenesis. 54 Table 3. Thermal melting points (Tm) of TDP-43 measured by circular dichroism (CD) and differential scanning fluorimetry (DSF). 55 Table 4. Crystallographic statistics of RRM1/DNA and RRM1-D169G/DNA complex. 56 Table 5. The molecular surface area of RRM1 and RRM1-D169G. 57 Table 6. Theoretical and experimental molecular weights and scattering parameters for NTD of human TDP-43. 58 CONTENT OF FIGURES Figure 1. The sequence alignment of human TDP-43 and mouse TDP-43. 59 Figure 2. The proposed physiological roles of TDP-43. 60 Figure 3. The reported three-dimensional structures of TDP-43. 61 Figure 4. The ab initio SAXS envelope of TDP-43 (N-RRM12). 62 Figure 5. Domain structures and ALS-linked mutations of TDP-43. 63 Figure 6. Various TDP-43 deletion contructs were made in this thesis. 64 Figure 7. Purification of TDP-43 proteins (RRM1-D169G as the example). 65 Figure 8. Gel-filtration and DLS profiles of RRM1-WT and RRM1-D169G. 66 Figure 9. SDS–PAGE analysis of the purified TDP-43 proteins. 67 Figure 10. The CD spectra and Tm estimation for TDP-43 proteins. 68 Figure 11. The melting point analysis of TDP-43 by differential scanning fluorimetry. 69 Figure 12. Caspases digestion assays of N-RRM12 and mutants. 70 Figure 13. Crystals and the crystallization conditions of RRM1-WT and RRM1-D169G. 71 Figure 14. The overall crystal structures of RRM1-WT and RRM1-D169G. 72 Figure 15. The close view of RRM1-D169G/DNA complex. 73 Figure 16. The interactions between RRM1 and DNA. 74 Figure 17. The superimposition of RRM1/DNA determined previously with RRM1/DNA and RRM1-D169G/DNA determined in this study. 75 Figure 18. A close look at Turn6 in the RRM1 and D169G mutant. 76 Figure 19. The superimposition of the crystal structure of RRM1-D169G with RRM1 structures determined by NMR. 77 Figure 20. The molecular dynamics simulations between RRM1 and D169G. 78 Figure 21. Increased TDP-35 fragments of D169G mutant in vivo. 79 Figure 22. The N-terminal domain (NTD) of TDP-43 forms primarily a homodimer. 80 Figure 23. The TDP-43 NTD with the C39A muation forms a stable dimer. 81 Figure 24. MASS spectra of NTD-C39A and NTD-C50A. 82 Figure 25. SAXS profiles and models of NTD-WT and NTD-C39A. 83 Figure 26. The ab initio SAXS envelope of NTD-C39A. 84 Figure 27. A model for TDP-43 cleavage, accumulation and inclusion formation. 85

    1. Wang, H.-Y., Wang, I.-F., Bose, J. and Shen, C.-K.J. (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics, 83, 130-139.
    2. Tudor, E.L., Galtrey, C.M., Perkinton, M.S., Lau, K.F., De Vos, K.J., Mitchell, J.C., Ackerley, S., Hortobagyi, T., Vamos, E., Leigh, P.N. et al. (2010) Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience, 167, 774-785.
    3. Ou, S.H., Wu, F., Harrich, D., García-Martínez, L.F. and Gaynor, R.B. (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol, 69, 3584-3596.
    4. Reddi, P.P., Shore, A.N., Shapiro, J.A., Anderson, A., Stoler, M.H. and Acharya, K.K. (2003) Spermatid-specific promoter of the SP-10 gene functions as an insulator in somatic cells. Dev Biol, 262, 173-182.
    5. Ayala, Y.M., Misteli, T. and Baralle, F.E. (2008) TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc Natl Acad Sci U S A, 105, 3785-3789.
    6. Abhyankar, M.M., Urekar, C. and Reddi, P.P. (2007) A novel CpG-free vertebrate insulator silences the testis-specific SP-10 gene in somatic tissues: role for TDP-43 in insulator function. J Biol Chem, 282, 36143-36154.
    7. Welsh, M.J. and Smith, A.E. (1995) Cystic fibrosis. Sci Am, 273, 52-59.
    8. Buratti, E. and Baralle, F.E. (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem, 276, 36337-36343.
    9. Buratti, E., Dork, T., Zuccato, E., Pagani, F., Romano, M. and Baralle, F.E. (2001) Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J, 20, 1774-1784.
    10. Brousseau, M.E., Millar, J.S., Diffenderfer, M.R., Nartsupha, C., Asztalos, B.F., Wolfe, M.L., Mancuso, J.P., Digenio, A.G., Rader, D.J. and Schaefer, E.J. (2009) Effects of cholesteryl ester transfer protein inhibition on apolipoprotein A-II-containing HDL subspecies and apolipoprotein A-II metabolism. J Lipid Res, 50, 1456-1462.
    11. Mercado, P.A., Ayala, Y.M., Romano, M., Buratti, E. and Baralle, F.E. (2005) Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res, 33, 6000-6010.
    12. Bose, J.K., Wang, I.F., Hung, L., Tarn, W.Y. and Shen, C.K. (2008) TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J Biol Chem, 283, 28852-28859.
    13. Strong, M.J., Volkening, K., Hammond, R., Yang, W., Strong, W., Leystra-Lantz, C. and Shoesmith, C. (2007) TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci, 35, 320-327.
    14. Lee, M.K., Xu, Z., Wong, P.C. and Cleveland, D.W. (1993) Neurofilaments are obligate heteropolymers in vivo. J Cell Biol, 122, 1337-1350.
    15. Nixon, R.A. and Shea, T.B. (1992) Dynamics of neuronal intermediate filaments: a developmental perspective. Cell Motil Cytoskeleton, 22, 81-91.
    16. Bergeron, C., Beric-Maskarel, K., Muntasser, S., Weyer, L., Somerville, M.J. and Percy, M.E. (1994) Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol, 53, 221-230.
    17. Wong, N.K., He, B.P. and Strong, M.J. (2000) Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol, 59, 972-982.
    18. Menzies, F.M., Grierson, A.J., Cookson, M.R., Heath, P.R., Tomkins, J., Figlewicz, D.A., Ince, P.G. and Shaw, P.J. (2002) Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J Neurochem, 82, 1118-1128.
    19. Ge, W.W., Wen, W., Strong, W., Leystra-Lantz, C. and Strong, M.J. (2005) Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem, 280, 118-124.
    20. Ge, W.W., Volkening, K., Leystra-Lantz, C., Jaffe, H. and Strong, M.J. (2007) 14-3-3 protein binds to the low molecular weight neurofilament (NFL) mRNA 3' UTR. Mol Cell Neurosci, 34, 80-87.
    21. Ayala, Y.M., De Conti, L., Avendano-Vazquez, S.E., Dhir, A., Romano, M., D'Ambrogio, A., Tollervey, J., Ule, J., Baralle, M., Buratti, E. et al. (2011) TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J, 30, 277-288.
    22. Colombrita, C., Onesto, E., Megiorni, F., Pizzuti, A., Baralle, F.E., Buratti, E., Silani, V. and Ratti, A. (2012) TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem, 287, 15635-15647.
    23. Lambrechts, D., Storkebaum, E., Morimoto, M., Del-Favero, J., Desmet, F., Marklund, S.L., Wyns, S., Thijs, V., Andersson, J., van Marion, I. et al. (2003) VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet, 34, 383-394.
    24. Borroni, B., Ghezzi, S., Agosti, C., Archetti, S., Fenoglio, C., Galimberti, D., Scarpini, E., Di Luca, M., Bresolin, N., Comi, G.P. et al. (2008) Preliminary evidence that VEGF genetic variability confers susceptibility to frontotemporal lobar degeneration. Rejuvenation Res, 11, 773-780.
    25. Baker, M., Mackenzie, I.R., Pickering-Brown, S.M., Gass, J., Rademakers, R., Lindholm, C., Snowden, J., Adamson, J., Sadovnick, A.D., Rollinson, S. et al. (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 442, 916-919.
    26. Cruts, M., Gijselinck, I., van der Zee, J., Engelborghs, S., Wils, H., Pirici, D., Rademakers, R., Vandenberghe, R., Dermaut, B., Martin, J.J. et al. (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature, 442, 920-924.
    27. Chekulaeva, M. and Filipowicz, W. (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol, 21, 452-460.
    28. Siomi, H. and Siomi, M.C. (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell, 38, 323-332.
    29. Newman, M.A. and Hammond, S.M. (2010) Emerging paradigms of regulated microRNA processing. Genes Dev, 24, 1086-1092.
    30. Kawahara, Y. and Mieda-Sato, A. (2012) TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A, 109, 3347-3352.
    31. Trojanowski, J.Q., Duff, K., Fillit, H., Koroshetz, W., Kuret, J., Murphy, D., Refolo, L. and Frontotemporal Dementia Working Group on, F.T.D.D.D. (2008) New directions for frontotemporal dementia drug discovery. Alzheimers Dement, 4, 89-93.
    32. Wang, I.F., Wu, L.S., Chang, H.Y. and Shen, C.K. (2008) TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem, 105, 797-806.
    33. Dreyfuss, G., Matunis, M.J., Pinol-Roma, S. and Burd, C.G. (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem, 62, 289-321.
    34. Shiina, Y., Arima, K., Tabunoki, H. and Satoh, J. (2010) TDP-43 dimerizes in human cells in culture. Cell Mol Neurobiol, 30, 641-652.
    35. Wang, Y.T., Kuo, P.H., Chiang, C.H., Liang, J.R., Chen, Y.R., Wang, S., Shen, J.C. and Yuan, H.S. (2013) The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates. J Biol Chem, 288, 9049-9057.
    36. Qin, H., Lim, L.Z., Wei, Y. and Song, J. (2014) TDP-43 N terminus encodes a novel ubiquitin-like fold and its unfolded form in equilibrium that can be shifted by binding to ssDNA. Proc Natl Acad Sci U S A, 111, 18619-18624.
    37. Maris, C., Dominguez, C. and Allain, F.H. (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J, 272, 2118-2131.
    38. Xu, R.M., Jokhan, L., Cheng, X., Mayeda, A. and Krainer, A.R. (1997) Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs. Structure (London, England : 1993), 5, 559-570.
    39. Wang, X. and Hall, T.M.T. (2001) Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat Struct Mol Biol, 8, 141-145.
    40. Crichlow, G.V., Zhou, H., Hsiao, H.-h., Frederick, K.B., Debrosse, M., Yang, Y., Folta-Stogniew, E.J., Chung, H.-J., Fan, C., De La Cruz, E.M. et al. (2008) Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c-myc inhibition. EMBO J, 27, 277-289.
    41. Kuo, P.H., Doudeva, L.G., Wang, Y.T., Shen, C.K. and Yuan, H.S. (2009) Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res, 37, 1799-1808.
    42. Kuo, P.H., Chiang, C.H., Wang, Y.T., Doudeva, L.G. and Yuan, H.S. (2014) The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Res, 42, 4712-4722.
    43. Lukavsky, P.J., Daujotyte, D., Tollervey, J.R., Ule, J., Stuani, C., Buratti, E., Baralle, F.E., Damberger, F.F. and Allain, F.H. (2013) Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol, 20, 1443-1449.
    44. Buratti, E., Brindisi, A., Giombi, M., Tisminetzky, S., Ayala, Y.M. and Baralle, F.E. (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem, 280, 37572-37584.
    45. Wang, H.Y., Wang, I.F., Bose, J. and Shen, C.K. (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics, 83, 130-139.
    46. Smethurst, P., Sidle, K.C. and Hardy, J. (2015) Review: Prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathol Appl Neurobiol, 41, 578-597.
    47. Wang, I.F., Chang, H.Y., Hou, S.C., Liou, G.G., Way, T.D. and James Shen, C.K. (2012) The self-interaction of native TDP-43 C terminus inhibits its degradation and contributes to early proteinopathies. Nat Commun, 3, 766.
    48. Guo, W., Chen, Y., Zhou, X., Kar, A., Ray, P., Chen, X., Rao, E.J., Yang, M., Ye, H., Zhu, L. et al. (2011) An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol, 18, 822-830.
    49. Igaz, L.M., Kwong, L.K., Chen-Plotkin, A., Winton, M.J., Unger, T.L., Xu, Y., Neumann, M., Trojanowski, J.Q. and Lee, V.M. (2009) Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. J Biol Chem, 284, 8516-8524.
    50. Budini, M., Buratti, E., Stuani, C., Guarnaccia, C., Romano, V., De Conti, L. and Baralle, F.E. (2012) Cellular model of TAR DNA-binding protein 43 (TDP-43) aggregation based on its C-terminal Gln/Asn-rich region. J Biol Chem, 287, 7512-7525.
    51. Forman, M.S., Trojanowski, J.Q. and Lee, V.M. (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med, 10, 1055-1063.
    52. Mondragon-Rodriguez, S., Perry, G., Zhu, X. and Boehm, J. (2012) Amyloid Beta and tau proteins as therapeutic targets for Alzheimer's disease treatment: rethinking the current strategy. Int J Alzheimers Dis, 2012, 630182.
    53. Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R. et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 276, 2045-2047.
    54. Trottier, Y., Lutz, Y., Stevanin, G., Imbert, G., Devys, D., Cancel, G., Saudou, F., Weber, C., David, G., Tora, L. et al. (1995) Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature, 378, 403-406.
    55. Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., Mann, D., Tsuchiya, K., Yoshida, M., Hashizume, Y. et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun, 351, 602-611.
    56. Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314, 130-133.
    57. Cairns, N.J., Neumann, M., Bigio, E.H., Holm, I.E., Troost, D., Hatanpaa, K.J., Foong, C., White, C.L., 3rd, Schneider, J.A., Kretzschmar, H.A. et al. (2007) TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol, 171, 227-240.
    58. Thorpe, J.R., Tang, H., Atherton, J. and Cairns, N.J. (2008) Fine structural analysis of the neuronal inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy. J Neural Transm, 115, 1661-1671.
    59. Hasegawa, M., Arai, T., Nonaka, T., Kametani, F., Yoshida, M., Hashizume, Y., Beach, T.G., Buratti, E., Baralle, F., Morita, M. et al. (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol, 64, 60-70.
    60. Gendron, T.F., Josephs, K.A. and Petrucelli, L. (2010) Review: transactive response DNA-binding protein 43 (TDP-43): mechanisms of neurodegeneration. Neuropathol Appl Neurobiol, 36, 97-112.
    61. Neary, D., Snowden, J. and Mann, D. (2005) Frontotemporal dementia. Lancet Neurol, 4, 771-780.
    62. Snowden, J.S., Neary, D. and Mann, D.M. (2002) Frontotemporal dementia. Br J Psychiatry, 180, 140-143.
    63. Kumar-Singh, S. and Van Broeckhoven, C. (2007) Frontotemporal lobar degeneration: current concepts in the light of recent advances. Brain Pathol, 17, 104-114.
    64. Cardarelli, R., Kertesz, A. and Knebl, J.A. (2010) Frontotemporal dementia: a review for primary care physicians. Am Fam Physician, 82, 1372-1377.
    65. Bahia VS, T.L., Deramecourt V. (2013) Neuropathology of frontotemporal lobar degeneration: a review. Dement. Neuropsychol., 7, 19-26.
    66. Shaw, C.E., al-Chalabi, A. and Leigh, N. (2001) Progress in the pathogenesis of amyotrophic lateral sclerosis. Curr Neurol Neurosci Rep, 1, 69-76.
    67. Shaw, C.E., Enayat, Z.E., Powell, J.F., Anderson, V.E., Radunovic, A., al-Sarraj, S. and Leigh, P.N. (1997) Familial amyotrophic lateral sclerosis. Molecular pathology of a patient with a SOD1 mutation. Neurology, 49, 1612-1616.
    68. Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J.P., Deng, H.X. et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59-62.
    69. Van Deerlin, V.M., Leverenz, J.B., Bekris, L.M., Bird, T.D., Yuan, W., Elman, L.B., Clay, D., Wood, E.M., Chen-Plotkin, A.S., Martinez-Lage, M. et al. (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol, 7, 409-416.
    70. Millecamps, S., Salachas, F., Cazeneuve, C., Gordon, P., Bricka, B., Camuzat, A., Guillot-Noel, L., Russaouen, O., Bruneteau, G., Pradat, P.F. et al. (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet, 47, 554-560.
    71. Iguchi, Y., Katsuno, M., Ikenaka, K., Ishigaki, S. and Sobue, G. (2013) Amyotrophic lateral sclerosis: an update on recent genetic insights. J Neurol, 260, 2917-2927.
    72. Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J.C., Williams, K.L., Buratti, E. et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 319, 1668-1672.
    73. Winton, M.J., Van Deerlin, V.M., Kwong, L.K., Yuan, W., Wood, E.M., Yu, C.E., Schellenberg, G.D., Rademakers, R., Caselli, R., Karydas, A. et al. (2008) A90V TDP-43 variant results in the aberrant localization of TDP-43 in vitro. FEBS Lett, 582, 2252-2256.
    74. Kabashi, E., Valdmanis, P.N., Dion, P., Spiegelman, D., McConkey, B.J., Vande Velde, C., Bouchard, J.P., Lacomblez, L., Pochigaeva, K., Salachas, F. et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet, 40, 572-574.
    75. Corrado, L., Ratti, A., Gellera, C., Buratti, E., Castellotti, B., Carlomagno, Y., Ticozzi, N., Mazzini, L., Testa, L., Taroni, F. et al. (2009) High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum Mutat, 30, 688-694.
    76. Zou, Z.Y., Peng, Y., Wang, X.N., Liu, M.S., Li, X.G. and Cui, L.Y. (2012) Screening of the TARDBP gene in familial and sporadic amyotrophic lateral sclerosis patients of Chinese origin. Neurobiol Aging, 33, 2229 e2211-2229 e2218.
    77. Del Bo, R., Ghezzi, S., Corti, S., Pandolfo, M., Ranieri, M., Santoro, D., Ghione, I., Prelle, A., Orsetti, V., Mancuso, M. et al. (2009) TARDBP (TDP-43) sequence analysis in patients with familial and sporadic ALS: identification of two novel mutations. Eur J Neurol, 16, 727-732.
    78. Lemmens, R., Race, V., Hersmus, N., Matthijs, G., Van Den Bosch, L., Van Damme, P., Dubois, B., Boonen, S., Goris, A. and Robberecht, W. (2009) TDP-43 M311V mutation in familial amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry, 80, 354-355.
    79. Fujita, Y., Ikeda, M., Yanagisawa, T., Senoo, Y. and Okamoto, K. (2011) Different clinical and neuropathologic phenotypes of familial ALS with A315E TARDBP mutation. Neurology, 77, 1427-1431.
    80. Baumer, D., Parkinson, N. and Talbot, K. (2009) TARDBP in amyotrophic lateral sclerosis: identification of a novel variant but absence of copy number variation. J Neurol Neurosurg Psychiatry, 80, 1283-1285.
    81. Kirby, J., Goodall, E.F., Smith, W., Highley, J.R., Masanzu, R., Hartley, J.A., Hibberd, R., Hollinger, H.C., Wharton, S.B., Morrison, K.E. et al. (2010) Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis. Neurogenetics, 11, 217-225.
    82. Rutherford, N.J., Zhang, Y.J., Baker, M., Gass, J.M., Finch, N.A., Xu, Y.F., Stewart, H., Kelley, B.J., Kuntz, K., Crook, R.J. et al. (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet, 4, e1000193.
    83. Yokoseki, A., Shiga, A., Tan, C.F., Tagawa, A., Kaneko, H., Koyama, A., Eguchi, H., Tsujino, A., Ikeuchi, T., Kakita, A. et al. (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol, 63, 538-542.
    84. Kuhnlein, P., Sperfeld, A.D., Vanmassenhove, B., Van Deerlin, V., Lee, V.M., Trojanowski, J.Q., Kretzschmar, H.A., Ludolph, A.C. and Neumann, M. (2008) Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch Neurol, 65, 1185-1189.
    85. Daoud, H., Valdmanis, P.N., Kabashi, E., Dion, P., Dupre, N., Camu, W., Meininger, V. and Rouleau, G.A. (2009) Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J Med Genet, 46, 112-114.
    86. Kamada, M., Maruyama, H., Tanaka, E., Morino, H., Wate, R., Ito, H., Kusaka, H., Kawano, Y., Miki, T., Nodera, H. et al. (2009) Screening for TARDBP mutations in Japanese familial amyotrophic lateral sclerosis. J Neurol Sci, 284, 69-71.
    87. Ticozzi, N., LeClerc, A.L., van Blitterswijk, M., Keagle, P., McKenna-Yasek, D.M., Sapp, P.C., Silani, V., Wills, A.M., Brown, R.H., Jr. and Landers, J.E. (2011) Mutational analysis of TARDBP in neurodegenerative diseases. Neurobiol Aging, 32, 2096-2099.
    88. Chiang, H.H., Andersen, P.M., Tysnes, O.B., Gredal, O., Christensen, P.B. and Graff, C. (2012) Novel TARDBP mutations in Nordic ALS patients. J Hum Genet, 57, 316-319.
    89. Tsai, C.P., Soong, B.W., Lin, K.P., Tu, P.H., Lin, J.L. and Lee, Y.C. (2011) FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS. Neurobiol Aging, 32, 553 e513-521.
    90. Huang, R., Fang, D.F., Ma, M.Y., Guo, X.Y., Zhao, B., Zeng, Y., Zhou, D., Yang, Y. and Shang, H.F. (2012) TARDBP gene mutations among Chinese patients with sporadic amyotrophic lateral sclerosis. Neurobiol Aging, 33, 1015 e1011-1016.
    91. Origone, P., Caponnetto, C., Bandettini Di Poggio, M., Ghiglione, E., Bellone, E., Ferrandes, G., Mancardi, G.L. and Mandich, P. (2010) Enlarging clinical spectrum of FALS with TARDBP gene mutations: S393L variant in an Italian family showing phenotypic variability and relevance for genetic counselling. Amyotroph Lateral Scler, 11, 223-227.
    92. van Blitterswijk, M., Vlam, L., van Es, M.A., van der Pol, W.L., Hennekam, E.A., Dooijes, D., Schelhaas, H.J., van der Kooi, A.J., de Visser, M., Veldink, J.H. et al. (2012) Genetic overlap between apparently sporadic motor neuron diseases. PLoS One, 7, e48983.
    93. Iida, A., Kamei, T., Sano, M., Oshima, S., Tokuda, T., Nakamura, Y. and Ikegawa, S. (2012) Large-scale screening of TARDBP mutation in amyotrophic lateral sclerosis in Japanese. Neurobiol Aging, 33, 786-790.
    94. De Marco, G., Lupino, E., Calvo, A., Moglia, C., Buccinna, B., Grifoni, S., Ramondetti, C., Lomartire, A., Rinaudo, M.T., Piccinini, M. et al. (2011) Cytoplasmic accumulation of TDP-43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations. Acta Neuropathol, 121, 611-622.
    95. Conforti, F.L., Sproviero, W., Simone, I.L., Mazzei, R., Valentino, P., Ungaro, C., Magariello, A., Patitucci, A., La Bella, V., Sprovieri, T. et al. (2011) TARDBP gene mutations in south Italian patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry, 82, 587-588.
    96. Ticozzi, N., Vance, C., Leclerc, A.L., Keagle, P., Glass, J.D., McKenna-Yasek, D., Sapp, P.C., Silani, V., Bosco, D.A., Shaw, C.E. et al. (2011) Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis. Am J Med Genet B Neuropsychiatr Genet, 156B, 285-290.
    97. Czell, D., Andersen, P.M., Morita, M., Neuwirth, C., Perren, F. and Weber, M. (2013) Phenotypes in Swiss patients with familial ALS carrying TARDBP mutations. Neurodegener Dis, 12, 150-155.
    98. Johnson, B.S., Snead, D., Lee, J.J., McCaffery, J.M., Shorter, J. and Gitler, A.D. (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem, 284, 20329-20339.
    99. Kabashi, E., Lin, L., Tradewell, M.L., Dion, P.A., Bercier, V., Bourgouin, P., Rochefort, D., Bel Hadj, S., Durham, H.D., Vande Velde, C. et al. (2010) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet, 19, 671-683.
    100. Barmada, S.J. and Finkbeiner, S. (2010) Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease-associated pathways. Rev Neurosci, 21, 251-272.
    101. Duan, W., Li, X., Shi, J., Guo, Y., Li, Z. and Li, C. (2010) Mutant TAR DNA-binding protein-43 induces oxidative injury in motor neuron-like cell. Neuroscience, 169, 1621-1629.
    102. Ling, S.C., Albuquerque, C.P., Han, J.S., Lagier-Tourenne, C., Tokunaga, S., Zhou, H. and Cleveland, D.W. (2010) ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A, 107, 13318-13323.
    103. Wu, L.S., Cheng, W.C. and Shen, C.K. (2013) Similar dose-dependence of motor neuron cell death caused by wild type human TDP-43 and mutants with ALS-associated amino acid substitutions. J Biomed Sci, 20, 33.
    104. Austin, J.A., Wright, G.S., Watanabe, S., Grossmann, J.G., Antonyuk, S.V., Yamanaka, K. and Hasnain, S.S. (2014) Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life. Proc Natl Acad Sci U S A, 111, 4309-4314.
    105. Kim, S.H., Shi, Y., Hanson, K.A., Williams, L.M., Sakasai, R., Bowler, M.J. and Tibbetts, R.S. (2009) Potentiation of amyotrophic lateral sclerosis (ALS)-associated TDP-43 aggregation by the proteasome-targeting factor, ubiquilin 1. J Biol Chem, 284, 8083-8092.
    106. Finelli, M.J., Liu, K.X., Wu, Y., Oliver, P.L. and Davies, K.E. (2015) Oxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations. Hum Mol Genet, 24, 3529-3544.
    107. Watanabe, S., Kaneko, K. and Yamanaka, K. (2013) Accelerated disease onset with stabilized familial amyotrophic lateral sclerosis (ALS)-linked mutant TDP-43 proteins. J Biol Chem, 288, 3641-3654.
    108. Zhang, Y.J., Xu, Y.F., Dickey, C.A., Buratti, E., Baralle, F., Bailey, R., Pickering-Brown, S., Dickson, D. and Petrucelli, L. (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci, 27, 10530-10534.
    109. Igaz, L.M., Kwong, L.K., Chen-Plotkin, A., Winton, M.J., Unger, T.L., Xu, Y., Neumann, M., Trojanowski, J.Q. and Lee, V.M.-Y. (2009) Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. J Biol Chem, 284, 8516-8524.
    110. Dormann, D., Capell, A., Carlson, A.M., Shankaran, S.S., Rodde, R., Neumann, M., Kremmer, E., Matsuwaki, T., Yamanouchi, K., Nishihara, M. et al. (2009) Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem, 110, 1082-1094.
    111. Nishimoto, Y., Ito, D., Yagi, T., Nihei, Y., Tsunoda, Y. and Suzuki, N. (2010) Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J Biol Chem, 285, 608-619.
    112. Huang, C.C., Bose, J.K., Majumder, P., Lee, K.H., Huang, J.T., Huang, J.K. and Shen, C.K. (2014) Metabolism and mis-metabolism of the neuropathological signature protein TDP-43. J Cell Sci, 127, 3024-3038.
    113. Li, Q., Yokoshi, M., Okada, H. and Kawahara, Y. (2015) The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity. Nat Commun, 6, 6183.
    114. Igaz, L.M., Kwong, L.K., Xu, Y., Truax, A.C., Uryu, K., Neumann, M., Clark, C.M., Elman, L.B., Miller, B.L., Grossman, M. et al. (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Amer J Pathol, 173, 182-194.
    115. Zhang, Y.-J., Xu, Y.-F., Cook, C., Gendron, T.F., Roettges, P., Link, C.D., Lin, W.-L., Tong, J., Castanedes-Casey, M., Ash, P. et al. (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A,, 106, 7607-7612.
    116. Wils, H., Kleinberger, G., Janssens, J., Pereson, S., Joris, G., Cuijt, I., Smits, V., Ceuterick-de Groote, C., Van Broeckhoven, C. and Kumar-Singh, S. (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A,, 107, 3858-3863.
    117. Che, M.X., Jiang, Y.J., Xie, Y.Y., Jiang, L.L. and Hu, H.Y. (2011) Aggregation of the 35-kDa fragment of TDP-43 causes formation of cytoplasmic inclusions and alteration of RNA processing. FASEB J, 25, 2344-2353.
    118. Xiao, S., Sanelli, T., Chiang, H., Sun, Y., Chakrabartty, A., Keith, J., Rogaeva, E., Zinman, L. and Robertson, J. (2015) Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathol, 130, 49-61.
    119. Suzuki, H., Lee, K. and Matsuoka, M. (2011) TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J Biol Chem, 286, 13171-13183.
    120. Zhang, Y.J., Caulfield, T., Xu, Y.F., Gendron, T.F., Hubbard, J., Stetler, C., Sasaguri, H., Whitelaw, E.C., Cai, S., Lee, W.C. et al. (2013) The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet, 22, 3112-3122.
    121. Cohen, T.J., Hwang, A.W., Unger, T., Trojanowski, J.Q. and Lee, V.M. (2012) Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking. EMBO J, 31, 1241-1252.
    122. Schagger, H. (2006) Tricine-SDS-PAGE. Nat Protoc, 1, 16-22.
    123. Kopec, J. and Schneider, G. (2011) Comparison of fluorescence and light scattering based methods to assess formation and stability of protein-protein complexes. J Struct Biol, 175, 216-223.
    124. Schägger, H. (2006) Tricine–SDS-PAGE. Nat. Protoc., 16-22.
    125. Petoukhov, M.V., Franke, D., Shkumatov, A.V., Tria, G., Kikhney, A.G., Gajda, M., Gorba, C., Mertens, H.D., Konarev, P.V. and Svergun, D.I. (2012) New developments in the program package for small-angle scattering data analysis. J Appl Crystallogr, 45, 342-350.
    126. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. and Svergun, D.I. (2003) PRIMUS : a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr, 36, 1277-1282.
    127. Svergun, D.I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr, 25, 495-503.
    128. Svergun, D. (1999) Restoring Low Resolution Structure of Biological Macromolecules from Solution Scattering Using Simulated Annealing. Biophysical Journal, 76, 2879-2886.
    129. Volkov, V.V. and Svergun, D.I. (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr, 36, 860-864.
    130. Fischer, H., Neto, M.D., Napolitano, H.B., Polikarpov, I. and Craievich, A.F. (2010) Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J Appl Crystallogr, 43, 101-109.
    131. Li, Q., Yokoshi, M., Okada, H. and Kawahara, Y. (2015) The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity. Nat. Comm., 6, DOI: 10.1038/ncomms7183.
    132. Shodai, A., Morimura, T., Ido, A., Uchida, T., Ayaki, T., Takahashi, R., Kitazawa, S., Suzuki, S., Shirouzu, M., Kigawa, T. et al. (2013) Aberrant assembly of RNA-recognition motif 1 links to pathogenic conversion of TAR DNA-binding protein-43 (TDP-43). J Biol Chem.
    133. Putnam, C.D., Hammel, M., Hura, G.L. and Tainer, J.A. (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly reviews of biophysics, 40, 191-285.
    134. Xiao, S., Sanelli, T., Chiang, H., Sun, Y., Chakrabartty, A., Keith, J., Rogaeva, E., Zinman, L. and Robertson, J. (2015) Low molecular weight species of TDP‑43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathol., DOI 10.1007/s00401-00015-01412-00405.
    135. Morishima-Kawashima, M. (2014) Molecular mechanism of the intramembrane cleavage of the β-carboxyl terminal fragment of amyloid precursor protein by γ-secretase. Front. Physiol., 5, 463.
    136. Schellenberg, G.D. and Montine, T.J. (2012) The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol., 124, 305-323.
    137. Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science (New York, N.Y.), 314, 130-133.
    138. Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., Mann, D., Tsuchiya, K., Yoshida, M., Hashizume, Y. et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun, 351, 602-611.
    139. Wang, J., Van Damme, P., Cruchaga, C., Gitcho, M.A., Vidal, J.M., Seijo-Martinez, M., Wang, L., Wu, J.Y., Robberecht, W. and Goate, A. (2010) Pathogenic cysteine mutations affect progranulin function and production of mature granulins. J Neurochem, 112, 1305-1315.
    140. Meng, F., Yao, D., Shi, Y., Kabakoff, J., Wu, W., Reicher, J., Ma, Y., Moosmann, B., Masliah, E., Lipton, S.A. et al. (2011) Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener, 6, 34.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE