簡易檢索 / 詳目顯示

研究生: 陳郁文
Chen, Yu-Wen.
論文名稱: 含非平面之負二價四配位配位基與銥金屬錯合物的合成、結構鑑定及光物理性質分析
Synthesis, Structures Identification, and Photophysical Properties Analysis for Iridium(III) Complexes Bearing a Nonplanar Tetradentate Dianionic Ligand
指導教授: 季昀
Chi, Yun
口試委員: 蔡易州
Tsai, Yi-Chou
張志豪
Chang, Chih-Hao
徐秀福
Hsu, Hsiu-Fu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 108
中文關鍵詞: 有機發光二極體銥金屬錯合物
外文關鍵詞: OLEDs, Iridium, Complex
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以雙三牙配位基 (3+3) 合成的銥金屬錯合物,由於其結構的剛性以及光色的可調控性,已經展現出其製作 OLEDs 元件的潛力。而本論文主要以 (N^C^N^N) 作為負二價四配位,搭配不同的單配位或二配位配位基合成出 (4+2)、(4+1+1) 或雙銥金屬的錯合物。這三個系列的反應,需先合成出銥金屬與四配位的中間體,在和單配位或二配位進行反應。在錯合物的鑑定中,利用單晶繞射可以觀察到四配位與銥金屬是一個非平面的結構,因此剩下的空配位會是 cis 的位相,且可以發現因為其斷共軛的設計,使的四配位與中心金屬會形成三個六圓環的結構。 第一系列中,使用單配位的 4-methylpyrazole、3,5-dimethylpyrazole 和 4-dimethylaminopyridine 及二配位的 acetylacetone 和 picolinic acid 合成錯合物,分別測量其固態和液態的光物理,液態下最高量子效率為 9.1 %,固態下最高的量子效率為 14.1 %,其效率並不理想。於是在第二系列使用了二配位的 pyridine pyrazole 和 pyrazine pyrazole 合成錯合物,在合成這系列的錯合物時,發現會有異構物的生成,並由單晶繞射得到證明,分別測量其固態和液態的光物理,液態下最高量子效率為 10.7 %,固態下最高的量子效率則可達 83.7 %。第三系列是以單配位的 4-methylpyrazole、3,5-dimethylpyrazole 加入了鹼進行反應,卻意外得到了雙銥金屬的錯合物,可以從氫譜 NMR 中發現有 metal hydride 的訊號,並由單晶繞射得知是一個雙銥金屬的結構,且其含有羰基的鍵結。


    Bis-tridentate Iridium (III) skeletons (3+3) have shown high potential in application with organic light-emitting diodes (OLEDs). Owing to rigidified architecture and color-tunability of 3+3 system, this class of emitters can exhibit not only excellent emission efficiency but also emission color spanning from red to blue. According to their robust structure, in this thesis, we studied iridium complexes employing multi-dentate dianionic chelating ligands, i.e. tetradentate chelates (N^C^N^N), and plus either double monodentate (4+1+1) or bidentate (4+2). This type of iridium complexes can be obtained by first assembling tetradentate onto iridium metal, followed by the addition with second pro-chelating ligands, for which employed monodentate ligands are 4-methylpyrazole, 3,5-dimethylpyrazole and 4-dimethylaminopyridine while bidenate ones are acetylacetone, picolinic acid, pyridyl pyrazole and pyrazinyl pyrazole. With single X-ray crystallographic results, non-coplannar geometry can be observed in tetradentate-iridium complexes. Moreover, it’s noteworthy that tetradentate-iridium complexes also form three 6-membered metallacycle and remain two cis vacant site.
    First, those iridium compounds occupied by 4-methylpyrazole, 3,5-dimethylpyrazole and 4-dimethylaminopyridine and acetylacetone, picolinic acid in remaining vacant sites provided inferior emission efficiencies with peaks at 9.1% in fluid state while 14.1% in solid state. Secondly, multi-dentate iridium complexes embodied with pyridyl pyrazole and pyrazinyl pyrazole showed peak emission efficiencies of 10.7 % in degassed solution but higher 83.7 % in powder states. Surprisingly, the stereoisomers can be obtained in this type of iridium skeleton and can be unambiguously unfolded by single X-ray analysis. Thirdly, to our surprises, the presence of base together with monodentate, i.e. 4-methylpyrazole and 3,5-dimethylaminopyridine, can afford di-iridium complexes with CO attached and unique metal hydride. These iridium architecture also can be unveiled by crystallographic analysis. Hopefully, this synthetic knowledge can offer better understanding of multi-dentate iridium compounds and thus obtain efficient emitters for OLEDs applications.

    摘要 2 Abstract 3 第一章、序論 11 第一節、OLED 的發展 11 第二節、OLED元件發光原理 14 (1) Förster 能量轉移: 15 (2) Dexter 能量轉移: 16 第三節、螢光磷光發光原理 19 第四節、磷光材料發展 22 一、(2+2+2) 銥金屬磷光材料 23 二、(3+3) 銥金屬磷光材料 27 三、(3+2+1) 銥金屬磷光材料 32 四、(4+1+1) 銥金屬磷光材料 35 五、(4+2) 銥金屬磷光材料 36 第五節、研究動機 37 第二章、實驗部分 38 第一節、試藥 38 第二節、分析儀器 38 第三節、配位基之合成 41 1.二配位之配位基合成 41 a.合成(2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridine) L6 41 b.合成(2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyrazine) L7 42 2.四配位配位基合成 43 a.合成2-acetyl-6-bromopyridine (A) 43 b.合成2-bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine (B) 44 c.合成1-phenyl-1-(pyridin-2-yl)ethane (C) 44 d.合成1-(6-(1-phenyl-1-(pyridin-2-yl)ethyl)pyridin-2-yl)ethan-1-one (D) 45 e.合成2-(1-phenyl-1-(pyridin-2-yl)ethyl)-6-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridine (E) 46 第四節、銥金屬錯合物之合成 47 1.銥金屬中間體錯合物合成 47 a.銥金屬三配位中間體 (Ir1) 47 b.銥金屬四配位中間體 (Ir2) 48 2.第一系列銥金屬錯合物之合成 49 a.合成 1.1 49 b.合成 1.2 50 c.合成 1.3 51 d.合成 1.4 52 e.合成 1.5 52 3.第二系列銥金屬錯合物之合成 54 a.合成 2.1及 2.2 54 b.合成 2.3 及 2.4 55 4.雙銥金屬錯合物之合成 57 a.合成3.1 57 b.合成3.2 58 第三章、結果與討論 60 第一節、錯合物中間體合成探討 60 第二節、第一系列銥金屬錯合物 61 一、錯合物合成的探討 61 二、錯合物的晶體解析 62 三、錯合物光物理性質探討 70 四、錯合物電化學性質探討 73 第三節、第二系列銥金屬錯合物 75 一、錯合物合成的探討 75 二、錯合物的晶體解析 76 三、錯合物光物理性質探討 83 四、錯合物電化學性質探討 86 第四節、第三系列銥金屬錯合物 88 一、錯合物合成的探討 88 二、錯合物的晶體解析 88 三、錯合物的羰基來源探討 92 第四章、結論 94 錯合物 NMR 光譜圖 95 參考文獻 106

    1. M. Pope, H. Kallmann and J. Giachino, J. Chem. Phys., 1965, 42, 2540-2543.
    2. M. Pope, H. P. Kallmann and P. Magnante, J. Chem. Phys., 1963, 38, 2042-2043.
    3. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913-915.
    4. C. Adachi, M. A. Baldo and S. R. Forrest, J. Appl. Phys., 2000, 87, 8049-8055.
    5. M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature, 2000, 403, 750-753.
    6. T. Főrster, Discuss. Faraday Soc., 1959, 27, 7-17.
    7. D. L. Dexter, J. Chem. Phys., 1953, 21, 836-850.
    8. J. C. Koziar and D. O. Cowan, Acc. Chem. Res., 2002, 11, 334-341.
    9. A. Jablonski, Nature, 1933, 131, 839-840.
    10. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151-154.
    11. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082-2084.
    12. J. Li, P. I. Djurovich, B. D. Alleyne, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, Polyhedron, 2004, 23, 419-428.
    13. S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu and C. H. Chen, Adv. Mater., 2005, 17, 285-289.
    14. J. Lee, H. Oh, J. Kim, K.-M. Park, K. S. Yook, J. Y. Lee and Y. Kang, J. Mater. Chem. C, 2014, 2, 6040-6047.
    15. A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, J. Am. Chem. Soc., 2003, 125, 7377-7387.
    16. T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes and S. R. Forrest, Inorg. Chem., 2005, 44, 7992-8003.
    17. A. J. Wilkinson, A. E. Goeta, C. E. Foster and J. A. Williams, Inorg. Chem., 2004, 43, 6513-6515.
    18. A. J. Wilkinson, H. Puschmann, J. A. Howard, C. E. Foster and J. A. Williams, Inorg. Chem., 2006, 45, 8685-8699.
    19. B. Tong, H.-Y. Ku, I. J. Chen, Y. Chi, H.-C. Kao, C.-C. Yeh, C.-H. Chang, S.-H. Liu, G.-H. Lee and P.-T. Chou, J. Mater. Chem. C, 2015, 3, 3460-3471.
    20. J. Lin, N.-Y. Chau, J.-L. Liao, W.-Y. Wong, C.-Y. Lu, Z.-T. Sie, C.-H. Chang, M. A. Fox, P. J. Low, G.-H. Lee and Y. Chi, Organometallics, 2016, 35, 1813-1824.
    21. C. Y. Kuei, W. L. Tsai, B. Tong, M. Jiao, W. K. Lee, Y. Chi, C. C. Wu, S. H. Liu, G. H. Lee and P. T. Chou, Adv. Mater., 2016, 28, 2795-2800.
    22. S. Obara, M. Itabashi, F. Okuda, S. Tamaki, Y. Tanabe, Y. Ishii, K. Nozaki and M. A. Haga, Inorg. Chem., 2006, 45, 8907-8921.
    23. P. Brulatti, R. J. Gildea, J. A. Howard, V. Fattori, M. Cocchi and J. A. Williams, Inorg. Chem., 2012, 51, 3813-3826.
    24. C. Hierlinger, T. Roisnel, D. B. Cordes, A. M. Z. Slawin, D. Jacquemin, V. Guerchais and E. Zysman-Colman, Inorg. Chem., 2017, 56, 5182-5188.
    25. D. Chen, K. Li, X. Guan, G. Cheng, C. Yang and C.-M. Che, Organometallics, 2017, 36, 1331-1344.
    26. Y. S. Li, J. L. Liao, K. T. Lin, W. Y. Hung, S. H. Liu, G. H. Lee, P. T. Chou and Y. Chi, Inorg. Chem., 2017, 56, 10054-10060.
    27. T. Ziegler, and A. Rauk, Inorg. Chem., 1979, 18, 1755-1759.
    28. C. Wang, B. Bley, G. Balzer-Jollenbeck, A. R. Lewis, S. C. Siu, H. Willner, and F. Aubke, Chem. Commun., 1995, 0, 2071-2072.
    29. V. W.-W. Yam, and K. M.-C. Wong, Chem. Commun., 2011, 47, 11579-11592.
    30. X. Yang, X. Xu, and G. Zhou, J. Mater. Chem. C, 2015, 3, 913-944.
    31. K. S. Yook, and J. Y. Lee, Adv. Mater., 2012, 24, 3169-3190.
    32. H. Sasabe, and J. Kido, Eur. J. Org. Chem., 2013, 34, 7653-7663.
    33. Y. Chi, B. Tong, and P. T. Chou, Coord. Chem. Rev., 2014, 281, 1-25.
    34. E. W. Ciurczak, Practical Spectroscopy Series, 2001, 27, 7-18.
    35. A. C. Ugural, and S. K. Fenster, Advanced Strength and Applied Elasticity, 4th ed.
    36. T. Beutel, S. Kawi, S. K. Purnell, H. Knoezinger, and B. C. Gates, J. Chem. Phys., 1993, 97, 7284-7289.
    37. M. Mihaylov, E. Ivanova, F. Thibault-Starzyk, M. Daturi, L. Dimitrov, and K. Hadjiivanov, J. Chem. Phys., 2006, 110, 10383-10389.

    QR CODE