研究生: |
王家豪 Wang, Chia-Hao |
---|---|
論文名稱: |
五環素與鈷介面之磁區微結構與巨觀磁性質之探討 Micro-domain Structure and Magnetic Properties of the Interface between Pentacene and Cobalt Layer |
指導教授: |
李志浩
Lee, Chih-Hao 魏德新 Wei, Der-Hsin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 有機自旋閥 、磁區 、光電子發射顯微鏡 、磁光柯爾效應儀 |
外文關鍵詞: | orgnic spin-valve, magnetic domain, PEEM, MOKE |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要探討在不同製備參數下,有機自旋閥結構中之有機半導體分子五環素(Pentacene, Pc)與蒸鍍在其上層鐵磁層鈷(Cobalt, Co)介面的磁特性。 雙層結構的介面是經由製備超薄膜來模擬,而磁特性的量測則是透過軟X-光吸收光譜、顯像式光電子激發顯微鏡、磁光柯爾效應儀等工具來進行。本研究的實驗結果顯示,當蒸鍍於Cu(100)表面的Pc厚度為8 nm 時, 其上層之Co膜需要達到1.8 nm的厚度才能夠顯現出室溫鐵磁性。同時,Co膜層的磁影像在出現鐵磁性的初期具有多個方向磁化向量,但是隨著Co厚度的持續增加,其磁化向量的方向漸趨一致。類似的鐵磁性與膜厚的關係亦出現在巨觀磁性質的量測上;Co膜層的矯頑磁場隨著厚度而逐漸增加至13.3 Oe的飽和值。
另外,由於稍早的光電子能譜術研究已經指出Co/Pc的介面會出現化學反應,而在對Co的X光吸收光譜的強度進行分析後,我們認為蒸鍍初期的部分Co原子有可能滲入Pc膜層內。本篇論文進而討論是否透過將基板降低溫時蒸鍍Co以及在Co/Pc介面間增加一層阻擋層銅(Copper, Cu)可以降低Co和Pc間發生化學反應的機會。實驗結果證實,於低溫的基板上蒸鍍Co,可將Co在Pc上出現鐵磁性的臨界厚度縮短至1.44 nm,而利用加入2.7 nm Cu作為阻擋層也可以將臨界厚度縮短至0.9 nm。由於極化載子在介面傳輸時,將會穿過此層非磁性層,因此將樣品出現磁性的臨界厚度縮短,可以減少極化載子被散射的機會,對於有機自旋閥元件的效率有著直接的影響。
In this thesis, different fabrication processes were employed to grow Co/Pc(Co on Pc) bilayers structure. Through Magneto Optic Kerr effect (MOKE) and X-ray Photoemission Electron Microscope (X-PEEM), the magnetic responses of ferromagnetic layer deposited on organic semiconductor film were studied. According to the experimental results, Co film depositing on an 8 nm Pc film begins to show its room temperature ferromagnetism at 1.8 nm, along with a complex magnetization patterns. Increasing the thickness of Co film transforms the lateral dimensions and magnetization directions of domains gradually to a larger and better aligned configuration. The coercivity of thick Co film eventually reached a stable value of 13.3 Oe.
According to the X-ray Photoemission Spectroscopy (XPS) study reported earlier, the interface of Co/Pc appears to be chemical reacted. In this study, we step further to investigate “where” this chemical reaction is likely to occur through analyzing the spectra of X-ray Absorption Spectroscopy (XAS). Based on the intensity analysis, the Co atoms are suggested to diffuse into Pc layer at the beginning of Co deposition. In order to prevent the occurrence of chemical reaction and diffusion at interface, two methods were adopted - inserting a 2.7 nm Cu layer as the blocking spacer between Pc and Co layers, cooling the substrate during Co deposition. The results show that both approaches can reduce the critical thickness that corresponds to the onset of room temperature ferromagnetism. Since spin transport in a vertical hybrid structure requires the polarized spins to transport through the interface, practical methods capable of reducing the magnetic critical thickness would lower the chance of polarized spins to be scattered (reduce the scattering cross section of polarized spins), and thus help to maintain the spin coherence among carriers.
第一章
1. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn,“Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange”, Physical Review B, 39, 4828, 1989
2. M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas,“Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Physical Review Letters, 61, 2472, 1988
3. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger,“Spintronics: A spin-based electronics vision for the future”, Science, 294, 1488-1495, 2001
4. V. I. Krinichnyi,“2-mm Waveband electron paramagnetic resonance spectroscopy of conducting polymers”, Synthetic Metals, 108, 173-222, 2000
5. F. J. Jedema, A. T. Filip, and B. J. van Wees,“Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve”, Nature, 410, 345-348, 2001
6. W. J. M. Naber, S. Faez, and W. G. van der Wiel,“Organic spintronics”, Journal of Physics D-Applied Physics, 40, R205-R228, 2007
7. Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi,“Giant magnetoresistance in organic spin-valves”, Nature, 427, 821-824, 2004
8. F. J. Wang, Z. H. Xiong, D. Wu, J. Shi, and Z. V. Vardeny,“Organic spintronics: The case of Fe/Alq3/Co spin-valve devices”, Synthetic Metals, 155, 172-175, 2005
9. T. Shimada, H. Nogawa, T. Noguchi, Y. Furubayashi, Y. Yamamoto, Y. Hirose, T. Hitosugi, and T. Hasegawa,“Magnetotransport Properties of Fe/Pentacene/Co:TiO2 Junctions with Fe Top Contact Electrodes Prepared by Thermal Evaporation and Pulsed Laser Deposition”, Japanese Journal of Applied Physics, 47, 1184, 2008
10. Y. Liu, T. Lee, H. E. Katz, and D. H. Reich. Effects of carrier mobility and morphology in organic semiconductor spin valves. 2009. Austin, Texas (USA): AIP.
11. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras,“Pentacene Thin Film Growth”, Chemistry of Materials, 16, 4497-4508, 2004
第二章
12. S.CHikazumi著, and 張煦、李學養合譯,“磁性物理學”, 1982
13. D. J. Griffiths,“Introduction to Quantum Mechanics (2nd ed.)”, 2004
14. B. D. Cullity,“Introduction to magnetic materials”, 133, 1972
15. C.Kittel,“Introduction to Solid State Physics”, 2005
16. 吳建文,“磁性顯微術”, 國立中山大學物理學研究所, 中華民國九十七年
17. 金重勳主編,“磁性技術手冊”, 中華民國磁性技術協會 出版, 2002
18. A. Fert, and I. A. Campbell,“Two-Current Conduction in Nickel”, Physical Review Letters, 21, 1190, 1968
19. 江文中、李尚凡,“2007諾貝爾物理獎-輕鬆看巨磁阻 ”, 物理雙月刊, 三十卷二期, 2008
20. M. Julliere,“Tunneling between ferromagnetic films”, Physics Letters A, 54, 225-226, 1975
21. D. V. M. T. W. Kelley, P. F. Baude, T. P. Smith, and T. D. Jones “High Performance Organic Thin Film Transistors”, Organic and Polumeric Materials and Devices, 771, 169, 2003
22. C. D. Dimitrakopoulos, and P. R. L. Malenfant,“Organic Thin Film Transistors for Large Area Electronics”, Advanced Materials, 14, 99-117, 2002
23. Y. Liu, S. M. Watson, T. Lee, J. M. Gorham, H. E. Katz, J. A. Borchers, H. D. Fairbrother, and D. H. Reich,“Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures”, Physical Review B, 79, 2009
24. Y.-L. Chan, Y.-J. Hung, C.-H. Wang, Y.-C. Lin, C.-Y. Chiu, Y.-L. Lai, H.-T. Chang, C.-H. Lee, Y. J. Hsu, and D. H. Wei,“Magnetic Response of an Ultrathin Cobalt Film in Contact with an Organic Pentacene Layer”, Physical Review Letters, 104, 177204, 2010
第三章
25. http://www.nsrrc.org.tw/,“
26. 魏德新、許瑤真,“影像式光電子顯微術於磁性薄膜及微結構研究的介紹”, 物理雙月刊, 廿六卷四期, 2004
27. S. Imada, S. Suga, W. Kuch, and J. Kirschner,“Magnetic microspectroscopy by a combination of XMCD and PEEM”, Surface Review and Letters, 9, 877-881, 2002
28. 汪建民,“材料分析”, 中國材料科學學會, 中華民國八十七年
29. http://www.virginia.edu/ep/SurfaceScience/electron_interactions.htm,“
30. S. D. Bader,“SMOKE”, Journal of Magnetism and Magnetic Materials, 100, 440-454, 1991
31. M. Freiser,“A survey of magnetooptic effects”, Magnetics, IEEE Transactions on, 4, 152-161, 1968
第四章
32. 洪雅娟,“五環素與鈷之介面電子結構和磁性質之探討”, 國立清華大學工程與系統科學系先進光源組, 中華民國九十八年
第五章
33. C. T. Chen, Y. U. Idzerda, H. J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette,“Experimental Confirmation of the X-Ray Magnetic Circular Dichroism Sum Rules for Iron and Cobalt”, Physical Review Letters, 75, 152, 1995
34. R. Nakajima, J. Stöhr, and Y. U. Idzerda,“Electron-yield saturation effects in L-edge x-ray magnetic circular dichroism spectra of Fe, Co, and Ni”, Physical Review B, 59, 6421, 1999
35. T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Lüning, J. Stöhr, and R. L. White,“Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy”, Physical Review B, 64, 214422, 2001
36. A. C. Dürr, F. Schreiber, M. Kelsch, H. D. Carstanjen, and H. Dosch,“Morphology and Thermal Stability of Metal Contacts on Crystalline Organic Thin Films”, Advanced Materials, 14, 961-963, 2002
37. M. Popinciuc, H. T. Jonkman, and B. J. van Wees,“Energy level alignment symmetry at Co/pentacene/Co interfaces”, Journal of Applied Physics, 100, 093714-8, 2006
38. J. Stohr,“NEXAFS Spectroscopy”, 1992
39. F. de Groot,“High-Resolution X-ray Emission and X-ray Absorption Spectroscopy”, Chemical Reviews, 101, 1779-1808, 2001
40. A. Nagashima, N. Tejima, and C. Oshima,“Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems”, Physical Review B, 50, 17487, 1994
41. F.-J. Meyer zu Heringdorf, M. C. Reuter, and R. M. Tromp,“Growth dynamics of pentacene thin films”, Nature, 412, 517-520, 2001
42. C. M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J. J. Demiguel, and R. Miranda,“CURIE-TEMPERATURE OF ULTRATHIN FILMS OF FCC COBALT EPITAXIALLY GROWN ON ATOMICALLY FLAT CU(100) SURFACES”, Physical Review Letters, 64, 1059-1062, 1990
43. S. J. Steinmuller, C. A. F. Vaz, V. Strom, C. Moutafis, C. M. Gurtler, M. Klaui, J. A. C. Bland, and Z. Cui. Influence of substrate roughness on the magnetic properties of thin fcc Co films. in 10th Joint Annual Magnetism and Magnetic Materials Conference/Annual Intermag Conference. 2007. Balitmore, MD.
44. S. W. Poon, J. S. Pan, and E. S. Tok,“Nucleation and growth of cobalt nanostructures on highly oriented pyrolytic graphite”, Physical Chemistry Chemical Physics, 8, 3326-3334, 2006
45. Robert E. Reed-Hill, Reza Abbaschian 著 劉偉隆,曾春風, 陳文照, 林淳杰 編譯,“物理冶金”, 1999
46. A. C. Durr, F. Schreiber, M. Kelsch, H. D. Carstanjen, H. Dosch, and O. H. Seeck,“Morphology and interdiffusion behavior of evaporated metal films on crystalline diindenoperylene thin films”, Journal of Applied Physics, 93, 5201-5209, 2003
47. C. C. Kuo, W. C. Lin, C. L. Chiu, H. L. Huang, and M.-T. Lin. Effect of growth temperature on Curie temperature of magnetic ultrathin films Co/Cu(100). 2001: AIP.