簡易檢索 / 詳目顯示

研究生: 王家豪
Wang, Chia-Hao
論文名稱: 五環素與鈷介面之磁區微結構與巨觀磁性質之探討
Micro-domain Structure and Magnetic Properties of the Interface between Pentacene and Cobalt Layer
指導教授: 李志浩
Lee, Chih-Hao
魏德新
Wei, Der-Hsin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 86
中文關鍵詞: 有機自旋閥磁區光電子發射顯微鏡磁光柯爾效應儀
外文關鍵詞: orgnic spin-valve, magnetic domain, PEEM, MOKE
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要探討在不同製備參數下,有機自旋閥結構中之有機半導體分子五環素(Pentacene, Pc)與蒸鍍在其上層鐵磁層鈷(Cobalt, Co)介面的磁特性。 雙層結構的介面是經由製備超薄膜來模擬,而磁特性的量測則是透過軟X-光吸收光譜、顯像式光電子激發顯微鏡、磁光柯爾效應儀等工具來進行。本研究的實驗結果顯示,當蒸鍍於Cu(100)表面的Pc厚度為8 nm 時, 其上層之Co膜需要達到1.8 nm的厚度才能夠顯現出室溫鐵磁性。同時,Co膜層的磁影像在出現鐵磁性的初期具有多個方向磁化向量,但是隨著Co厚度的持續增加,其磁化向量的方向漸趨一致。類似的鐵磁性與膜厚的關係亦出現在巨觀磁性質的量測上;Co膜層的矯頑磁場隨著厚度而逐漸增加至13.3 Oe的飽和值。
    另外,由於稍早的光電子能譜術研究已經指出Co/Pc的介面會出現化學反應,而在對Co的X光吸收光譜的強度進行分析後,我們認為蒸鍍初期的部分Co原子有可能滲入Pc膜層內。本篇論文進而討論是否透過將基板降低溫時蒸鍍Co以及在Co/Pc介面間增加一層阻擋層銅(Copper, Cu)可以降低Co和Pc間發生化學反應的機會。實驗結果證實,於低溫的基板上蒸鍍Co,可將Co在Pc上出現鐵磁性的臨界厚度縮短至1.44 nm,而利用加入2.7 nm Cu作為阻擋層也可以將臨界厚度縮短至0.9 nm。由於極化載子在介面傳輸時,將會穿過此層非磁性層,因此將樣品出現磁性的臨界厚度縮短,可以減少極化載子被散射的機會,對於有機自旋閥元件的效率有著直接的影響。


    In this thesis, different fabrication processes were employed to grow Co/Pc(Co on Pc) bilayers structure. Through Magneto Optic Kerr effect (MOKE) and X-ray Photoemission Electron Microscope (X-PEEM), the magnetic responses of ferromagnetic layer deposited on organic semiconductor film were studied. According to the experimental results, Co film depositing on an 8 nm Pc film begins to show its room temperature ferromagnetism at 1.8 nm, along with a complex magnetization patterns. Increasing the thickness of Co film transforms the lateral dimensions and magnetization directions of domains gradually to a larger and better aligned configuration. The coercivity of thick Co film eventually reached a stable value of 13.3 Oe.
    According to the X-ray Photoemission Spectroscopy (XPS) study reported earlier, the interface of Co/Pc appears to be chemical reacted. In this study, we step further to investigate “where” this chemical reaction is likely to occur through analyzing the spectra of X-ray Absorption Spectroscopy (XAS). Based on the intensity analysis, the Co atoms are suggested to diffuse into Pc layer at the beginning of Co deposition. In order to prevent the occurrence of chemical reaction and diffusion at interface, two methods were adopted - inserting a 2.7 nm Cu layer as the blocking spacer between Pc and Co layers, cooling the substrate during Co deposition. The results show that both approaches can reduce the critical thickness that corresponds to the onset of room temperature ferromagnetism. Since spin transport in a vertical hybrid structure requires the polarized spins to transport through the interface, practical methods capable of reducing the magnetic critical thickness would lower the chance of polarized spins to be scattered (reduce the scattering cross section of polarized spins), and thus help to maintain the spin coherence among carriers.

    摘 要 i Abstract iii 致謝 v 目 錄 vii 圖 目 錄 xi 第一章 序論 1 1.1 前言 1 1.2 研究動機 2 第二章 理論背景與文獻回顧 4 2.1 磁學背景 4 2.1.1 順磁性(Paramagnetism) 5 2.1.2 鐵磁性(Ferromagnetism) 6 2.1.3 反鐵磁性(Antiferromagnetism) 8 2.1.4 超順磁性(Superparamagnetism) 9 2.2 磁電阻效應(Magnetoresistance effect, MR) 9 2.2.1 巨磁阻(Giant Magnetoresistance effect, GMR) 10 2.2.2 穿隧式磁阻(Tunneling Magnetoresistance effect, TMR) 11 2.3 有機半導體-Pentacene 13 2.4 有機自旋閥相關歷史回顧 15 第三章 儀器設備與實驗原理 22 3.1 同步輻射光源(Synchrotron Radiation) 22 3.1.1 橢圓偏振聚頻磁鐵(Elliptically Polarized Undulator, EPU) 23 3.2 超高真空系統(Ultra-high Vacuum System, UHV) 24 3.3 光電子發射顯微鏡(PhotoEmission Electron Microscopy, PEEM) 26 3.3.1 XMCD-PEEM成像原理 27 3.4 歐傑電子能譜儀(Auger Electron Spectroscopy, AES) 29 3.5 低能電子繞射儀(Low Energy Electron Diffraction, LEED) 31 3.6 磁光柯爾效應儀(Magneto-Optical Kerr Effect, MOKE) 33 3.7 中能電子繞射儀(Medium Energy Electron Diffraction, MEED) 36 第四章 實驗方法與樣品量測 38 4.1 實驗流程 38 4.1.1 第一部分 38 4.1.2 第二部分 38 4.2 實驗方法 39 4.2.1 實驗材料 39 4.2.2 基板清潔 39 4.2.3 樣品製備 40 4.3 樣品量測 40 4.3.1 PEEM的量測 41 4.3.2 MOKE的量測 41 第五章 結果與討論 43 5.1 上電極Cobalt (Co)/ Pentacene(Pc)介面磁特性 44 5.1.1 Co/Pc介面 44 5.1.1a X-光吸收光譜 44 5.1.1b PEEM 影像,來自於Co/Pc 系統 51 5.1.1c MOKE,來自於Co/Pc 系統 58 5.1.2 上電極Cobalt (Co)/ Pentacene(Pc)在鍍上Co之前將基板降至低溫,介面磁區影像、MOKE 62 5.1.2a PEEM 影像,來自於Co(低溫蒸鍍)/Pc系統 63 5.1.2b MOKE,來自於Co(低溫蒸鍍)/Pc系統 64 5.1.3 上電極Cobalt (Co)/Copper(Cu)當緩衝層/ Pentacene(Pc)介面磁區影像、MOKE 69 5.1.3a PEEM影像,來自於Co/Cu當阻擋層/Pc系統 69 5.1.3b MOKE,來自於Co/Cu當阻擋層/Pc系統 71 5.2 上電極Iron(Fe)/Pentacene(Pc)/下電極Cobalt(Co),兩層鐵磁層間的磁交互作用力 73 5.2.1 2.26 nm Fe/7.2 nm Pc/1.44 nm Co系統 74 5.2.1a PEEM影像,來自於 2.26 nm Fe/7.2 nm Pc/1.44 nm Co 系統 74 5.2.1b MOKE,來自於 2.26 nm Fe/7.2 nm Pc/1.44 nm Co 系統 75 5.2.2 2.26 nm Fe/5.4 nm Pc/1.44 nm Co系統 76 5.2.2a PEEM 影像,來自於2.26 nm Fe/5.4 nm Pc/1.44 nm Co 系統 76 5.2.3 2.26 nm Fe/3.6 nm Pc/1.44 nm Co系統 76 5.2.3a PEEM 影像,來自於 2.26 nm Fe/3.6 nm Pc/1.44 nm Co系統 76 第六章 結論 78 未來展望 80 參考文獻 81

    第一章
    1. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn,“Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange”, Physical Review B, 39, 4828, 1989
    2. M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas,“Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Physical Review Letters, 61, 2472, 1988
    3. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger,“Spintronics: A spin-based electronics vision for the future”, Science, 294, 1488-1495, 2001
    4. V. I. Krinichnyi,“2-mm Waveband electron paramagnetic resonance spectroscopy of conducting polymers”, Synthetic Metals, 108, 173-222, 2000
    5. F. J. Jedema, A. T. Filip, and B. J. van Wees,“Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve”, Nature, 410, 345-348, 2001
    6. W. J. M. Naber, S. Faez, and W. G. van der Wiel,“Organic spintronics”, Journal of Physics D-Applied Physics, 40, R205-R228, 2007
    7. Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi,“Giant magnetoresistance in organic spin-valves”, Nature, 427, 821-824, 2004
    8. F. J. Wang, Z. H. Xiong, D. Wu, J. Shi, and Z. V. Vardeny,“Organic spintronics: The case of Fe/Alq3/Co spin-valve devices”, Synthetic Metals, 155, 172-175, 2005
    9. T. Shimada, H. Nogawa, T. Noguchi, Y. Furubayashi, Y. Yamamoto, Y. Hirose, T. Hitosugi, and T. Hasegawa,“Magnetotransport Properties of Fe/Pentacene/Co:TiO2 Junctions with Fe Top Contact Electrodes Prepared by Thermal Evaporation and Pulsed Laser Deposition”, Japanese Journal of Applied Physics, 47, 1184, 2008
    10. Y. Liu, T. Lee, H. E. Katz, and D. H. Reich. Effects of carrier mobility and morphology in organic semiconductor spin valves. 2009. Austin, Texas (USA): AIP.
    11. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras,“Pentacene Thin Film Growth”, Chemistry of Materials, 16, 4497-4508, 2004

    第二章
    12. S.CHikazumi著, and 張煦、李學養合譯,“磁性物理學”, 1982
    13. D. J. Griffiths,“Introduction to Quantum Mechanics (2nd ed.)”, 2004
    14. B. D. Cullity,“Introduction to magnetic materials”, 133, 1972
    15. C.Kittel,“Introduction to Solid State Physics”, 2005
    16. 吳建文,“磁性顯微術”, 國立中山大學物理學研究所, 中華民國九十七年
    17. 金重勳主編,“磁性技術手冊”, 中華民國磁性技術協會 出版, 2002
    18. A. Fert, and I. A. Campbell,“Two-Current Conduction in Nickel”, Physical Review Letters, 21, 1190, 1968
    19. 江文中、李尚凡,“2007諾貝爾物理獎-輕鬆看巨磁阻 ”, 物理雙月刊, 三十卷二期, 2008
    20. M. Julliere,“Tunneling between ferromagnetic films”, Physics Letters A, 54, 225-226, 1975
    21. D. V. M. T. W. Kelley, P. F. Baude, T. P. Smith, and T. D. Jones “High Performance Organic Thin Film Transistors”, Organic and Polumeric Materials and Devices, 771, 169, 2003
    22. C. D. Dimitrakopoulos, and P. R. L. Malenfant,“Organic Thin Film Transistors for Large Area Electronics”, Advanced Materials, 14, 99-117, 2002
    23. Y. Liu, S. M. Watson, T. Lee, J. M. Gorham, H. E. Katz, J. A. Borchers, H. D. Fairbrother, and D. H. Reich,“Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures”, Physical Review B, 79, 2009
    24. Y.-L. Chan, Y.-J. Hung, C.-H. Wang, Y.-C. Lin, C.-Y. Chiu, Y.-L. Lai, H.-T. Chang, C.-H. Lee, Y. J. Hsu, and D. H. Wei,“Magnetic Response of an Ultrathin Cobalt Film in Contact with an Organic Pentacene Layer”, Physical Review Letters, 104, 177204, 2010

    第三章
    25. http://www.nsrrc.org.tw/,“
    26. 魏德新、許瑤真,“影像式光電子顯微術於磁性薄膜及微結構研究的介紹”, 物理雙月刊, 廿六卷四期, 2004
    27. S. Imada, S. Suga, W. Kuch, and J. Kirschner,“Magnetic microspectroscopy by a combination of XMCD and PEEM”, Surface Review and Letters, 9, 877-881, 2002
    28. 汪建民,“材料分析”, 中國材料科學學會, 中華民國八十七年
    29. http://www.virginia.edu/ep/SurfaceScience/electron_interactions.htm,“
    30. S. D. Bader,“SMOKE”, Journal of Magnetism and Magnetic Materials, 100, 440-454, 1991
    31. M. Freiser,“A survey of magnetooptic effects”, Magnetics, IEEE Transactions on, 4, 152-161, 1968

    第四章
    32. 洪雅娟,“五環素與鈷之介面電子結構和磁性質之探討”, 國立清華大學工程與系統科學系先進光源組, 中華民國九十八年

    第五章
    33. C. T. Chen, Y. U. Idzerda, H. J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette,“Experimental Confirmation of the X-Ray Magnetic Circular Dichroism Sum Rules for Iron and Cobalt”, Physical Review Letters, 75, 152, 1995
    34. R. Nakajima, J. Stöhr, and Y. U. Idzerda,“Electron-yield saturation effects in L-edge x-ray magnetic circular dichroism spectra of Fe, Co, and Ni”, Physical Review B, 59, 6421, 1999
    35. T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Lüning, J. Stöhr, and R. L. White,“Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy”, Physical Review B, 64, 214422, 2001
    36. A. C. Dürr, F. Schreiber, M. Kelsch, H. D. Carstanjen, and H. Dosch,“Morphology and Thermal Stability of Metal Contacts on Crystalline Organic Thin Films”, Advanced Materials, 14, 961-963, 2002
    37. M. Popinciuc, H. T. Jonkman, and B. J. van Wees,“Energy level alignment symmetry at Co/pentacene/Co interfaces”, Journal of Applied Physics, 100, 093714-8, 2006
    38. J. Stohr,“NEXAFS Spectroscopy”, 1992
    39. F. de Groot,“High-Resolution X-ray Emission and X-ray Absorption Spectroscopy”, Chemical Reviews, 101, 1779-1808, 2001
    40. A. Nagashima, N. Tejima, and C. Oshima,“Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems”, Physical Review B, 50, 17487, 1994
    41. F.-J. Meyer zu Heringdorf, M. C. Reuter, and R. M. Tromp,“Growth dynamics of pentacene thin films”, Nature, 412, 517-520, 2001
    42. C. M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J. J. Demiguel, and R. Miranda,“CURIE-TEMPERATURE OF ULTRATHIN FILMS OF FCC COBALT EPITAXIALLY GROWN ON ATOMICALLY FLAT CU(100) SURFACES”, Physical Review Letters, 64, 1059-1062, 1990
    43. S. J. Steinmuller, C. A. F. Vaz, V. Strom, C. Moutafis, C. M. Gurtler, M. Klaui, J. A. C. Bland, and Z. Cui. Influence of substrate roughness on the magnetic properties of thin fcc Co films. in 10th Joint Annual Magnetism and Magnetic Materials Conference/Annual Intermag Conference. 2007. Balitmore, MD.
    44. S. W. Poon, J. S. Pan, and E. S. Tok,“Nucleation and growth of cobalt nanostructures on highly oriented pyrolytic graphite”, Physical Chemistry Chemical Physics, 8, 3326-3334, 2006
    45. Robert E. Reed-Hill, Reza Abbaschian 著 劉偉隆,曾春風, 陳文照, 林淳杰 編譯,“物理冶金”, 1999
    46. A. C. Durr, F. Schreiber, M. Kelsch, H. D. Carstanjen, H. Dosch, and O. H. Seeck,“Morphology and interdiffusion behavior of evaporated metal films on crystalline diindenoperylene thin films”, Journal of Applied Physics, 93, 5201-5209, 2003
    47. C. C. Kuo, W. C. Lin, C. L. Chiu, H. L. Huang, and M.-T. Lin. Effect of growth temperature on Curie temperature of magnetic ultrathin films Co/Cu(100). 2001: AIP.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE