簡易檢索 / 詳目顯示

研究生: 曹凱勛
Tsao, Kai Hsun
論文名稱: 利用NMR研究Stip1蛋白C端部分與熱休克蛋白90和熱休克蛋白70之結合
NMR Study of Stip1 C-terminal portion in binding Hsp90 and Hsp70
指導教授: 蘇士哲
Sue, Shih Che
口試委員: 黃介嶸
王子豪
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 62
中文關鍵詞: 核磁共振光譜熱休克蛋白
外文關鍵詞: stress inducible protein 1
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Stip1 (STress-Inducible Protein 1) 是一個60kD的佐監護蛋白,它含有兩個DP功能區塊及三個TPR功能區塊,Stip1的主要功能是幫助熱休克蛋白90與熱休克蛋白70連結,TPR功能區塊對於佐監護蛋白(如:Stip1、HIP、CHIP)在與熱休克蛋白結合十分重要,Stip1-Hsp90-Hsp70的三元複合體主要功用在於客戶蛋白的折疊,有趣的是,雖然在Stip1之C端的DP2在之前研究中發現似乎不與熱休克蛋白結合,但它於客戶蛋白的折疊扮演關鍵的角色,相關機制尚未明瞭,我們的合作者發現,利用pull-down assay可證明Stip1在少了DP2這段功能區後,熱休克蛋白90及熱休克蛋白70可被偵測的量均減少,他們也發現在Stip1最C端的24個胺基酸 (Peptide 520)可減少卵巢癌腫瘤的生長,在本研究中,我們試著利用核磁共振光譜解析DP2和Peptide520的作用,並將之結果應用在癌症治療上,我們利用蛋白質骨架鑑定得知DP2的二級結構,且NOESY也可提供我們關於Peptide520的二級結構資訊,我們證明了Stip1之TPR2A-2B會與熱休克蛋白90之middle功能區與C端功能區有強交互作用,但DP2仍然未被鑑定出與熱休克蛋白90或熱休克蛋白70的連結,我們也證明了熱休克蛋白70的ATP水解酶功能區與熱休克蛋白90之middle功能區與C端功能區有直接的交互作用,從實驗得知,Peptide520不會影響Stip1與熱休克蛋白90跟熱休克蛋白70與熱休克蛋白90的連結,DP2與Peptide520在Stip1-Hsp90-Hsp的三元複合體中所扮演的角色需要更進一步解析。


    Stip1 (STress-Inducible Protein 1) is a 60 kD co-chaperone containing two DP (aspartate-proline) domains and three TPR (tetratricopeptide repeat) domains, and the main function of Stip1 is to assist the connection between Hsp90 (Heak shock protein 90) and Hsp70 (Heat shock protein 70). TPR domains are important for co-chaperones, such as Stip1, HIP and CHIP, to bind to Hsps. The Stip1-Hsp90-Hsp70 ternary complex is responsible for client protein folding. Interestingly, one of the DP domains in Stip1, DP2, plays a central role in client protein folding process, while the mechanism is less understood. There is no report to define the interaction between DP2 and Hsp90 or Hsp70. However, we noticed the deletion of DP2 in Stip1 decreases the ability in binding Hsp90 and Hsp70 in the pull-down assay. In addition, the last C-terminal fragment (Peptide 520) of Stip1 reduced the growth of ovarian tumor cell. In this study, we try to define the roles of DP2 and Peptide520 by NMR titration experiments. The structure information of DP2 and Peptide520 were established by NMR backbone assignment. Based on the NMR titration experiments, Stip1 TPR2A-2B showed strong interaction with Hsp90 middle and C-terminal domain, whereas DP2 remains no interaction with any domain of Hsp90 or Hsp70. We noticed the direct interaction between Hsp70 ATPase domain and Hsp90 middle and C-terminal domain. However, Peptide 520 has no effect in modulating the binding of Stip1-Hsp90 and Hsp90-Hsp70. The roles of DP2 and Peptide 520 in the Stip1-Hsp90-Hsp70 ternary complex still need to be further elucidated.

    Contents Contents I Abstract III 中文摘要 IV Abbreviations V 1. Introduction 1 1.1 Stip1 1 1.2 Hsp90 2 1.3 Hsp90-Hsp70-Stip1 complex 3 1.4 Peptide 520 4 1.5 Aims of this study 5 2. Materials and methods 10 2.1 Cloning, expression and purification 10 2.2 Circular dichroism spectroscopy (CD) 11 2.3 Nuclear magnetic resonance 12 2.3.1 Heteronuclear single quantum coherence spectroscopy (HSQC) 12 2.3.2 Transverse relaxation-optimized spectroscopy (TROSY) 13 2.3.3 Nuclear overhauser effect spectroscopy (NOESY) and Total correlation spectroscopy (TOCSY) 13 2.3.4 NMR backbone triple-resonance experiments 14 2.3.5 Secondary structure prediction 14 3. Results 31 3.1 Backbone assignment of Stip1 DP2 domain 31 3.2 Secondary structure comparison between yeast and human Stip1 DP2 domain 31 3.3 2D assignment and secondary structure of Peptide520 32 3.4 NMR titration experiments 33 3.4.1 Stip1 versus Hsp90 33 3.4.2 Stip1 versus Hsp70 35 3.4.3 Hsp70 versus Hsp90 36 3.4.4 Stip1-Hsp90-Hsp70 ternary complex 37 4. Discussion 56 References 58

    1. Scheufler, C., et al., Structure of TPR domain–peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell, 2000. 101(2): p. 199-210.
    2. Schmid, A.B., et al., The architecture of functional modules in the Hsp90 co‐chaperone Sti1/Hop. The EMBO journal, 2012. 31(6): p. 1506-1517.
    3. Wang, T.-H., et al., Stress-induced phosphoprotein 1 as a secreted biomarker for human ovarian cancer promotes cancer cell proliferation. Molecular & Cellular Proteomics, 2010. 9(9): p. 1873-1884.
    4. Johnson, J.L. and C. Brown, Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress and Chaperones, 2009. 14(1): p. 83-94.
    5. Allan, R.K. and T. Ratajczak, Versatile TPR domains accommodate different modes of target protein recognition and function. Cell stress and chaperones, 2011. 16(4): p. 353-367.
    6. Onuoha, S., et al., Structural studies on the co-chaperone Hop and its complexes with Hsp90. Journal of molecular biology, 2008. 379(4): p. 732-744.
    7. Yi, F., I. Doudevski, and L. Regan, HOP is a monomer: Investigation of the oligomeric state of the co‐chaperone HOP. Protein Science, 2010. 19(1): p. 19-25.
    8. Li, J., K. Richter, and J. Buchner, Mixed Hsp90–cochaperone complexes are important for the progression of the reaction cycle. Nature structural & molecular biology, 2011. 18(1): p. 61-66.
    9. Odunuga, O.O., et al., Tetratricopeptide Repeat Motif-mediated Hsc70-mSTI1 Interaction MOLECULAR CHARACTERIZATION OF THE CRITICAL CONTACTS FOR SUCCESSFUL BINDING AND SPECIFICITY. Journal of Biological Chemistry, 2003. 278(9): p. 6896-6904.
    10. Carrigan, P.E., et al., Multiple domains of the co-chaperone Hop are important for Hsp70 binding. Journal of Biological Chemistry, 2004. 279(16): p. 16185-16193.
    11. Carrigan, P.E., et al., Functional comparison of human and Drosophila Hop reveals novel role in steroid receptor maturation. Journal of Biological Chemistry, 2005. 280(10): p. 8906-8911.
    12. Flom, G., et al., Effect of mutation of the tetratricopeptide repeat and asparatate-proline 2 domains of Sti1 on Hsp90 signaling and interaction in Saccharomyces cerevisiae. Genetics, 2006. 172(1): p. 41-51.
    13. Röhl, A., et al., Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nature communications, 2015. 6.
    14. Yamamoto, S., et al., ATPase Activity and ATP-dependent Conformational Change in the Co-chaperone HSP70/HSP90-organizing Protein (HOP). Journal of Biological Chemistry, 2014. 289(14): p. 9880-9886.
    15. Sims, J.D., J. McCready, and D.G. Jay, Extracellular heat shock protein (Hsp) 70 and Hsp90alpha assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PloS one, 2011. 6(4): p. e18848.
    16. Walsh, N., et al., RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer letters, 2011. 306(2): p. 180-189.
    17. Kubota, H., et al., Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress and Chaperones, 2010. 15(6): p. 1003-1011.
    18. Tsai, C.-L., et al., Secreted stress-induced phosphoprotein 1 activates the ALK2-SMAD signaling pathways and promotes cell proliferation of ovarian cancer cells. Cell reports, 2012. 2(2): p. 283-293.
    19. Pratt, W.B., The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Experimental Biology and Medicine, 1998. 217(4): p. 420-434.
    20. Csermely, P., et al., ATP induces a conformational change of the 90-kDa heat shock protein (hsp90). Journal of Biological Chemistry, 1993. 268(3): p. 1901-1907.
    21. Hessling, M., K. Richter, and J. Buchner, Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nature structural & molecular biology, 2009. 16(3): p. 287-293.
    22. Zhang, H., et al., A Dynamic View of ATP-coupled Functioning Cycle of Hsp90 N-terminal Domain. Scientific reports, 2015. 5.
    23. Siligardi, G., et al., Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50 cdc37. Journal of Biological Chemistry, 2002. 277(23): p. 20151-20159.
    24. Zhang, M., et al., Structural and functional coupling of Hsp90‐and Sgt1‐centred multi‐protein complexes. The EMBO journal, 2008. 27(20): p. 2789-2798.
    25. Hawle, P., et al., The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Molecular and cellular biology, 2006. 26(22): p. 8385-8395.
    26. Olesen, S.H., et al., Stability of the Human Hsp90-p50Cdc37 Chaperone Complex against Nucleotides and Hsp90 Inhibitors, and the Influence of Phosphorylation by Casein Kinase 2. Molecules, 2015. 20(1): p. 1643-1660.
    27. Wegele, H., et al., Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. Journal of Biological Chemistry, 2003. 278(41): p. 39303-39310.
    28. Lee, C.T., et al., Dynamics of the regulation of Hsp90 by the co‐chaperone Sti1. The EMBO journal, 2012. 31(6): p. 1518-1528.
    29. Li, J., et al., Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nature structural & molecular biology, 2013. 20(3): p. 326-331.
    30. Echtenkamp, F.J., et al., Global functional map of the p23 molecular chaperone reveals an extensive cellular network. Molecular cell, 2011. 43(2): p. 229-241.
    31. Cliff, M.J., et al., Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90. Structure, 2006. 14(3): p. 415-426.
    32. Zhang, M., et al., Chaperoned ubiquitylation—crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Molecular cell, 2005. 20(4): p. 525-538.
    33. Stebbins, C.E., et al., Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell, 1997. 89(2): p. 239-250.
    34. Schulte, T.W., et al., Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell stress & chaperones, 1998. 3(2): p. 100.
    35. Söti, C., A. Rácz, and P. Csermely, A Nucleotide-dependent Molecular Switch Controls ATP Binding at the C-terminal Domain of Hsp90 N-TERMINAL NUCLEOTIDE BINDING UNMASKS A C-TERMINAL BINDING POCKET. Journal of Biological Chemistry, 2002. 277(9): p. 7066-7075.
    36. Horibe, T., et al., Designed hybrid TPR peptide targeting Hsp90 as a novel anticancer agent. Journal of translational medicine, 2011. 9(1): p. 8.
    37. Chen, S. and D.F. Smith, Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. Journal of Biological Chemistry, 1998. 273(52): p. 35194-35200.
    38. Flom, G., et al., Definition of the minimal fragments of Sti1 required for dimerization, interaction with Hsp70 and Hsp90 and in vivo functions. Biochem. J, 2007. 404: p. 159-167.
    39. Kirschke, E., et al., Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell, 2014. 157(7): p. 1685-1697.
    40. Didenko, T., et al., Hsp90 structure and function studied by NMR spectroscopy. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2012. 1823(3): p. 636-647.
    41. Roy, U., et al., Structural Investigation of HSP70-HSP90 and HSP90-TDF Interactions. Mod Chem appl, 2014. 2:126.
    42. Muller, P., et al., C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene, 2013. 32: p. 3301-3310.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE