研究生: |
廖大經 Dah-Jing Liaw |
---|---|
論文名稱: |
生物物種多樣性指標熵值的估計方法及模擬研究 Estimation and Simulation Study of the Shannon's Entropy Index |
指導教授: |
趙蓮菊
Anne Chao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 25 |
中文關鍵詞: | 生物多樣性 、熵 、模擬 、最大概度法 、摺刀法 、樣本涵蓋 |
外文關鍵詞: | biodiversity, entropy, simulation, maximum likelihood, jackknife, sample coverage, Shannon index |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Shannon(1948)所提出的Shannon index即為熱力學第二定律中的「熵」(entropy),
熵的概念最早應用於軍事情報學,代表在情報源中一個字母所平均負擔的情報量,或者
視為一種對於事件(event)選擇結果的不確定程度或尺度(scale),嗣後由MacArthur(1955)
及Margalef(1958)引用於生物物種多樣性的研究。我們假設在七種捕取數及十種不同的
物種種類出現機率的情形下,組合成七十種估計條件。本研究的目的即在於循模擬試驗的
途徑,在不同的估計條件下,針對三種Shannon index估式─最大概度估式(MLE)、樣本
涵蓋估式及摺刀法估式分別比較其估計量的表現。模擬結果發現,隨著捕取數目的增加,
該三種估計量的均方根誤差、樣本標準差及近似標準差均逐漸減少。就不同捕取數而言,
在物種種類數固定於100之條件下,當樣本數小於100時,無論就均方根誤差或95%信賴區
間平均覆蓋率來看,三種估計量中以樣本涵蓋估計量的整體表現為最佳,而最大概度估計
量為最差。我們進一步比較三種估計量的偏差及樣本標準差,發現最大概度估計量的樣本
標準差雖然最小,但是其偏差卻是最大,這正是影響最大概度估計量之估計表現的主要原因。
第二章:Shannon index的估計方法----------------------------- 2
2.1公式及符號簡介----------------------------------------------------- 4
2.2最大概度法----------------------------------------------------------- 4
2.3樣本涵蓋率----------------------------------------------------------- 5
2.4摺刀法----------------------------------------------------------------- 8
第三章:模擬試驗的方法----------------------------------------- 10
3.1捕取樣本數--------------------------------------------------------- 10
3.2物種種類出現機率------------------------------------------------ 10
3.3模擬方法------------------------------------------------------------ 11
第四章:模擬結果與討論----------------------------------------- 12
參考文獻------------------------------------------------------------- 24
Bashrin, G. P. (1959). On a statistical estimate for the entropy of a sequence of independent
random variables. Theory of Probability and Its Applications, Vol. IV, 333-336.
Blyth, C. R. (1959). Note on estimating information. Annals of Mathematical Statistics, 30, 71-79.
Bowman, K. O., Hutcheson, K., Odum, E. P., and Shenton, L. R. (1971). Comment on the
distribution of indices of diversity. In Statistical Ecology, Vol. 3. G. P. Patil, E. C. Pielou and W.
E. Waters (eds.), Pennsylvania State University Press, 315-359.
Chao, A., and S-M Lee. (1992). Estimating the number of classes via sample coverage. Journal of
the American Statistical Association, 87, 210-217.
Chao, A., Ma, M-C, and Yang, M. C. K. (1993). Stopping rules and estimation for recapture
debugging with unequal failure rates. Biometrika, 80, 193-201.
Esty, W. W. (1985). Estimation of the number of classes in a population and the coverage of a
sample. Mathematical Scientist, 10, 41-50.
Fisher, R. A., Corbet, A. S., and Williams, C. B.(1943). The relation between the number of
species and the number of individuals in a random sample of an animal population. Journal of
Animal Ecology, 12, 42-58.
Good, I. J. (1953). The population frequencies of species and the estimation of population
parameters. Biometrika, 40, 237-264.
Horvitz, D. G., and Thompson, D. J. (1952). A generalization of sampling without replacement
from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Hutcheson, K., and Shenton, L. R. (1974). Some moments of an estimate of Shannon's measure of
Information. Communications in Statistics, 3(1), 89-94.
MacArthur, R. H. (1955). Fluctuations of animal populations, and a measure of community
stability. Ecology, 36, 533-536.
Margalef, D. R. (1958). Information theory in ecology. General Systems., 3, 36-71.
Ross, S. M. (1985). Software reliability: the stopping rule problem. IEEE Transactions on Software
Engineering, SE-11, 1472-1476.
Sanger, P. E. and Hasler, A. D. (1969). Species diversity in lacustrine phytoplankton. I. The
components of the index of diversity from Shannon's formula. The American Naturalist, 103,
51-59.
Shannon, C. E.(1948). A mathematical theory of communication. Bell System Technical
Journal, 27,379-423, 623-656.
Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.
Smith, W. and Grassle, J. F. (1977). Sampling properties of a family of diversity measures.
Biometrics, 33, 283-292.
Zahl, S. (1977). Jackknifing an index of diversity. Ecology, 58, 907-913.