簡易檢索 / 詳目顯示

研究生: 林奕成
論文名稱: 光子晶體超稜鏡元件與邊界對能量耦合影響之研究
A Study of Photonic Crystal Superprism and Energy Coupling of Interfaces
指導教授: 齊正中
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 74
中文關鍵詞: 光子晶體超稜鏡光子晶體邊界
外文關鍵詞: photonic crystals, superprism, the boundary of photonic crystals
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光在周期介電係數排列形成的非等向性光子晶體中,具有不同方向大小的群速度和相速度;且由於其較ㄧ般晶體戲劇性變化的色散曲線,當光自均勻介質入射時,微小的入射波長或角度變化可大幅度地改變群速度和相速度。我們利用對群速度和相速度的調制分別設計出群速度稜鏡和相速度稜鏡,並模仿傳統稜鏡的接力分光,將兩稜鏡組合以求得更高的波長解析。

    為了減少稜鏡組合(邊界數目增加)造成的能量傳輸損耗,我們試著改變均勻介質和光子晶體間的邊界介電係數分佈,以提高光的穿透率或出射率。我們以有限元素分析法(finite-difference time domain method-FDTD)計算入射光在不同邊界時的穿透率,並討論因入射介質介電係數改變、晶體邊界介電係數分佈變化造成的晶體能帶位移和能隙擴大、穿透率大幅變化的現象。

    實驗上,我們利用半導體製程技術蝕刻矽晶片堆疊成具不同邊界的矩形基元二維正方晶格光子晶體,並以pump-probe技術量測不同邊界光子晶體在兆赫頻段下的穿透率分佈;和模擬結果相同,我們看到當邊界改變時,第二能帶的穿透率會有明顯的變化。


    1 前言………………………………………………………………… 1 1.1 光子晶體概述……………………………………………… 1 1.2 研究動機…………………………………………………… 2 1.3 理論計算與實驗…………………………………………… 3 2 光子晶體超稜鏡元件之新穎設計………………………………… 4 2.1 超稜鏡 (super prism) 現象概述………………………… 4 2.1.1 群速度超稜鏡 …………………………………… 5 2.1.2 相速度超稜鏡 …………………………………… 6 2.2 超稜鏡分波元件之新穎設計 ……………………………… 7 2.2.1 相速度超稜鏡設計………………………………… 8 2.2.2 群速度超稜鏡設計………………………………… 10 2.2.3 雙稜鏡分波元件…………………………………… 11 2.3 分波元件FDTD模擬結果…………………………………… 12 3 光子晶體邊界對能量耦合的影響 3.1 晶體表面現象概述………………………………………… 14 3.2 FDTD method 模擬晶體邊界對穿透的影響……………… 14 3.3 模擬結果分析與討論 …………………………………… 22 4 樣品製作…………………………………………………………… 28 4.1 樣品材料選擇……………………………………………… 28 4.2 樣品結構…………………………………………………… 29 4.3 晶圓蝕刻步驟……………………………………………… 31 4.3.1 條紋狀矩形溝槽蝕刻 (ICP) …………………… 31 4.3.2 周圍V形溝槽蝕刻 (wet etching) …………… 33 5 量測系統…………………………………………………………… 41 5.1 量測原理 …………………………………………………… 41 5.1.1 THz電磁輻射原理 ………………………………… 41 5.1.2 電光調制 (EO modulation)……………………… 43 5.2 系統裝置 …………………………………………………… 50 5.2.1 雷射光源…………………………………………… 50 5.2.2 THz放射器 (emitter)…………………………… 50 5.2.3 THz電磁波聚焦…………………………………… 51 5.2.4 樣品放置…………………………………………… 51 5.2.5 電光晶體與平衡光子接收器……………………… 51 5.2.6 激發-量測系統 …………………………………… 52 6 實驗結果與討論 ………………………………………………… 54 6.1 系晶片物性量測與THz訊號 ……………………………… 54 6.2 THz對不同邊界光子晶體的穿透頻譜 …………………… 60 6.2.1 不同入射介質對光子晶體的穿透頻譜…………… 60 6.2.2 不同邊界光子晶體的穿透頻譜…………………… 64 6.2.3 實驗與模擬結果比較……………………………… 64 7 結論………………………………………………………………… 70 參考資料 ……………………………………………………………… 71

    [1] E.Yablonovitch,” Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987)
    [2] E. Yablonovitch and T. J. Gmitter,” Photonic band structure: The face-centered-
    cubic case,” Phys. Rev. Lett. 63, 1950 (1989)
    [3] John D. Joannopulos, Robert D. Meade, Joshua N. Winn,”Photonic Crystals-
    Molding the Flow of Light”
    [4] Kazuaki Sakoda,”Optical Properties of Photonic Crystals”
    [5] Masatoshi Tokushima, Hideo Kosaka, Akihisa Tomita, and Hirohito Yamada,”Light-wave propagation through a 120° sharply bent single-line-defect photonic crystal wave-guide,” Appl. Phys. Lett. 76, 952 (2000)
    [6] Timothy D. Drysdale, Richard J. Blaikie and David R. S. Cumming,” Calculated and measured transmittance of a tunable metallic photonic crystal filter for tera-
    hertz frequencies,” Appl. Phys. Lett. 83, 5362 (2003)
    [7] J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin,”All-silica single-mode optical fiber with photonic crystal cladding,”Opt. Lett. 21, 1547 (1996)
    [8] Brian D. Urso, Oskar Painter, John O. Brien, Tom Tombrello, Amnon Yariv, and Axel Scherer,”Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155 (1998)
    [9] Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry,” All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002)
    [10] Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry,” Subwave-
    length imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003)
    [11] Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita, Masaya Notomi, Toshiaki Ta-mamura, Takashi Sato, and Shojiro Kawakami,”Superprism Phenemena in Photonic Crystals: Toward Microscale Lightwave Circuits,”J. Lightwave Technol. 17, 2032 (1999)
    [12] Toshihiko Baba, Member, IEEE, and Moasanori Nakamura,”Photonic Crystal Light Deflection Devices Using the Superprism Effect,”IEEE J. Quantum Electron. 38, 909 (2002)
    [13] A.Lupu, E.Cassan, S.Laval, L.EI Melhaoui, P.Lyan, J.M.Fedeli,”Experimental evid-ence for superprism phenomena in SOI photonic crystals,”Optics Express, 12, 5690 (2004)
    [14] Toshihiko Babaa) and Takashi Matsumoto,” Resolution of photonic crystal superprism,” Appl. Phys. Lett. 81, 2325 (2002)
    [15] Yeonsang Park and Heonsu Jeon,”Double-Layer Antireflection Coating Design for Semi-Infinite One-Dimensional Phototonic crystals,” J. Lightwave Technol. 22, 1987 (2004)
    [16] Jun Ushida, Masatoshi Tokushima, Masayuki Shirane, and Hirohito Yamada,”
    Systematic design of antireflection coating for semiinfinite one-dimensional photonic crystals using Bloch wave expansion,”Appl.Phys.Lett. 82, 7 (2003)
    [17] Young-Kyoung Choi, Young-Ki Ha, Jae-Eun Kim, Hae Yong Park, Kihong Kim,“
    Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Optics Commun. 230, 239 (2004)
    [18] Esteban Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced trans-
    mission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402(R) (2004)
    [19] Steven K. Morrison and Yuri S. Kivshar,” Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005)

    [20] P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar,” Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004)
    [21] J. B. Pendry and A. MacKinnon,” Calculation of photon dispersion relations,” Phys. Rev. Lett. 92, 113903 (2004)
    [22] Ya-Chih Tsai, John B. Pendry, and Kenneth W.-K. Shung,” Absolute three-dime-
    sional photonic band gap in the infrared regime in woven structures,” Phys. Rev. B 59, 10401 (1999)
    [23] K. M. Leung and Y. Qiu,” Multiple-scattering calculation of the two-dimensional photonic band structure,” Phys. Rev. B 48, 7767 (1993)
    [24] W. Kaiser,”Ultrashort Laser Pulses andApplications”
    [25] Ch. Fattinger and D. Grischkowsky,” Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988)
    [26] S.N. Tandon, M. Soljačić, G.S. Petrich, J.D. Joannopoulos and L.A. Kolodziejski
    ,” The superprism effect using large area 2D-periodic photonic crystal slabs,”
    Photonics and Nanostructures - Fundamentals and Applications 3, 10 (2005)
    [27] Chiyan Luo, Marin Soljacic, and J. D. Joannopoulos,” Superprism effect based
    on phase velocities,” Opt. Lett. 29, 745
    [29] T.Matsumoto and T. Baba, Member, IEEE ,”Photonic Crystal k-Vector Super-
    prism,” J. Lightwave Technol. 22, 917 (2004)
    [29] Takashi MATSUMOTO, Nonmember and Toshihiko BABA, Member,” Design and FDTD Simulation of Photonic Crystals k-Vector Superprism,” IEICE Trans.
    Electron. E87-C, 393 (2004)
    [30] Robert D. Meade, Karl D. Brommer, Andrew M. Rappe, and J. D. Joannopoulos,
    ” Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961 (1991)
    [31] F. Ramos-Mendieta, P. Halevi,”Electromagnetic surface modes of a dielectric superlattice:the supercell method,” J. Opt. Soc. Am. B 14, 370 (1997)
    [32] F. Ramos-Mendieta,” Surface electromagnetic waves in two-dimensional pho-
    tonic crystals: Effect of the position of the surface plane,” Phys. Rev. B 44,10961
    (1991)
    [33] Ramos-Mendieta, F. Halevi, and P. Halevi,” Surface modes in a 2D array of square dielectric cylinders,” Solid State Commun. Vol.100, No.5, 311 (1996)
    [34] Attila Mekis, Shanhui Fan, and J. D. Joannopoulos,” Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58, 4809 (1991)
    [35] Lucio Claudio Andreani and Mario Agio,” Intrinsic diffraction losses in photonic crystal waveguides with line defects,” Appl. Phys. Lett. 82, 2011 (2003)
    [36] Didier Felbacq and Rafik Smaâli,” Bloch Modes Dressed by Evanescent Waves and the Generalized Goos-Hänchen Effect in Photonic Crystals,” Phys. Rev. Lett. 92, 193902 (2004)
    [37] 王海蒂,”兆赫頻段二維光子晶體—採用蝕刻過的矽晶片疊堆,” 清華大學物 理系碩士論文, 民90
    [38] 林鳳瑜,”兆赫頻段二維與三維光子晶體之製作與量測,” 清華大學物理系碩
    士論文, 民92
    [39] 曾祥仁,”利用碲化鋅的電光效應研究次毫米電磁脈衝的時空分佈,” 清華大
    學物理系碩士論文, 民87

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE