簡易檢索 / 詳目顯示

研究生: 李祥吉
Shiang-Chi Lee
論文名稱: 日本腦炎病毒弱毒株CH2195LA之全長核酸序列與細胞株病毒複製型態分析
Complete nucleotide sequence and cell-line multiplication pattern of the attenuated variant CH2195LA of Japanese encephalitis virus
指導教授: 吳夙欽
Suh-Chin Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 89
中文關鍵詞: 日本腦炎病毒全長核酸序列基因型病毒繁殖複製型態演化樹叢分析相對適性分析
外文關鍵詞: Japanese encephalitis virus, complete nucleotide sequence, cell-line multiplication pattern, phylogenetic analysis, Relative fitness analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日本腦炎病毒是屬於黃病毒科(Flaviviridae)中黃病毒屬(Flavivirus)的病毒,是一種經由蚊子傳播給人類的節肢動物攜帶病毒。日本腦炎病毒感染人類會引起嚴重且具高致死率的疾病,一半以上的存活者會導致永久性神經損壞。日本腦炎病毒臺灣弱毒株CH2195LA是由臺灣本土株日本腦炎病毒CH2195中分離出,具有會被中和性單株抗體E3.3作用的特性,研究中用來與臺灣弱毒株CH2195LA進行比較的非減毒株CH2195SA同樣是由CH2195中分離出,但是不會被中和性單株抗體E3.3作用。本研究目的在於分析臺灣弱毒株日本腦炎病毒CH2195LA的全長核酸序列基因型及其在不同細胞株的病毒繁殖複製型態。首先直接定序病毒cDNA片段,找出弱毒株CH2195LA與非減毒株CH2195SA之間基因組的差異,再利用核酸序列演化樹叢分析,比較弱毒株CH2195LA與SA14-14-2、SA14-2-8及RP-2ms等文獻報導的減毒株在內的其他13株日本腦炎病毒株的演化遺傳關係。基因型的研究結果顯示,弱毒株CH2195LA與非減毒株CH2195SA之間共有E-85、E-306、E-331、E-387、NS2A-215、NS3-350、NS4B-196、NS4B-197、NS4B-198等9個胺基酸相異點,而弱毒株CH2195LA與經過鼠腦繼代四代的CH2195LA-SM4之間共有結構蛋白部分M-73、M-80、E-161、E-170、E-276以及非結構蛋白部分NS2A-136、NS2A-215、NS3-346、NS4A-128、NS4B-196、NS4B-197、NS4B-198等12個胺基酸相異點。核酸序列演化樹叢圖顯示弱毒株CH2195LA、非減毒株CH2195SA與JaOArS982屬於同一病毒亞群,但是弱毒株CH2195LA與SA14-14-2、SA14-2-8及 RP-2ms三株減毒株在演化遺傳關係上並不相近。
    臺灣弱毒株日本腦炎病毒CH2195LA細胞株複製型態的研究,先比較出弱毒株CH2195LA與非減毒株CH2195SA在8株不同細胞株的病毒複製型態差異,再以相對適性分析比較毒力不同的CH2195LA與CH2195SA等比例混合後感染Vero、THP-1、C6/36等三株細胞株的繁殖複製競爭力。細胞株複製型態的研究結果顯示,弱毒株CH2195 LA只有在Vero細胞株中的繁殖速度及最大感染力比非減毒株CH2195SA高。由相對適性向量分析發現,弱毒株CH2195 LA只有在Vero細胞持續繼代感染後出現適性增加的趨勢,而鼠腦繼代後的CH2195LA-SM4在Vero細胞持續繼代感染後出現適性增加但是較弱毒株CH2195LA低的趨勢。本篇論文比較出臺灣弱毒株日本腦炎病毒CH2195LA的毒力遺傳決定位可能是分佈在E、NS2A、NS3、NS4A、NS4B等多個基因中,並且得到弱毒株CH2195LA基因組經過鼠腦繼代後並不穩定,但是適合在Vero細胞株繁殖複製的結果,期能有助於提供研究日本腦炎病毒毒力及發展更好的日本腦炎減毒疫苗的資訊。


    Japanese encephalitis virus (JEV) is a mosquito-borne virus that belongs to the family Flaviviridae, genus Flavivirus. JEV causes fatal disease in human infection case and leads half of the survivors to neural system disrupted and psychoneurosis. The attenuated variant CH2195LA and the non-attenuated variant CH2195SA of Japanese encephalitis virus were both isolated from wild-type Taiwanese mosquito isolates CH2195. The attenuated variant CH2195LA was sensitive to mAb E3.3 neutralization and the non-attenuated variant CH2195SA was resistant to mAb E3.3 neutralization. The purpose of this research is to analyze the complete nucleotide sequence genotype and cell-line multiplication pattern phenotype of the attenuated variant CH2195LA of Japanese encephalitis virus. In the genotype study , we determined the complete nucleotide sequences of the two variants and found amino acid changes between them. Then we used complete nucleotide sequences phylogenetic analysis to compare the evolutionary relationship of the attenuated variant CH2195LA and other 14 JEV strains. Our study found there were 9 amino acid changes between the complete sequences of the two variants, including E-85, E-306, E-331, E-387, NS2A-215, NS3-350, NS4B-196, NS4B-197, and NS4B-198. There were 12 amino acid changes between CH2195LA and CH2195LA-SM4, including M-73, M-80, E-161, E-170, E-276, NS2A-136, NS2A-215, NS3-346, NS4A-128, NS4B-196, NS4B-197, and NS4B-198. The phylogenetic analysis indicated the attenuated variant CH2195LA is closely related to the non-attenuated variant CH2195SA and JaOArS982, and is distantly related to SA14-14-2, SA14-2-8, and RP-2ms of the attenuated JEV strains.
    The multiplication patterns of the two variants were investigated in eight different cell lines. The virus replication rate and maximum infectivity of the attenuated variant CH2195LA in Vero cell multiplication pattern were both higher than those of the non-attenuated variant CH2195SA. The multiplication patterns for CH2195LA compared with CH2195SA in other seven cell lines were different from Vero cell. We further determined the relative fitness of CH2195LA verse CH2195SA by using direct competitive mixture of both variants to measure the relative fitness change in three different cell lines passages, including Vero, C6/36, and THP-1. Relative fitness vector plot indicated the attenuated variant CH2195LA showed increased viral fitness in Vero cell line passages, but viral fitness of the mouse brain passage sample CH2195LA-SM4 was lower than the attenuated variant CH2195LA. The multiplication patterns and relative fitness results indicated that the attenuated variant CH2195LA was unique to culture in Vero cell lines, but it changed after mouse brain passage. The results suggested that the genome of the attenuated variant CH2195LA was not stable after mouse brain passaged. We can raise its gemome stability by continuous passaging the attenuated variant CH2195LA in Vero cell line. The results of this research were important for realizing the attenuation mechanism of the attenuated variant CH2195LA and developing attenuated JEV vaccines.

    英文摘要……………………………………………………….3

    第一章 緒論………………………………………………….5

    第二章 材料與方法……………………………….………………22

    第三章 結果……………………………………….………………36

    第四章 討論……………………………………….………………46

    第五章 結論………………………………………………..58

    圖表…………………………………………………………60

    參考文獻……………………………………………………….…..81

    Ali, A., Igarashi, A., 1997. Antigenic and genetic variations among Japanese ence-
    phalitis virus strains belonging to genotype 1. Microbiol. Immunol. 41, 241-252.
    Aihara, S., Rao, C., Yu, Y. X., Lee, T., Watanabe, K., Kamiya, T., Sumiyoshi, H., Hashimoto, H., and Nomoto, A., 1991. Identification of mutations that occurred on the genome of Japanese encephalitis virus during the attenuation process. Virus Genes 5, 95-109.
    Cao, J.X., Ni, H., Wills, M.R., Campbell, G.A., Sil, B.K., Ryman, K.D., Kitchen, I.,
    Barrett, A.D.T. 1995. Passage of Japanese encephalitis virus in HeLa cells results
    in attenuation of virulence in mice . J. Gen. Virol. 76. 2757-2764.
    Cecilia, D., Gould, E.A., 1991. Nucleotide changes responsible for loss of neuroin-
    vasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology
    181, 70-77.
    Chambers, T.J., Hahn, C.S., Galler, R., and Rice, C.M., 1990. Flavivirus genome
    organization, expression, and replication. Annu. Rev. Microbiol. 44, 649-88.
    Chambers, T.J., Grakoui, A., and Rice, C.M., 1991. Processing of the yellow fever virus non-structural protein : a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. J. Virol. 65, 6042-6050.
    Chambers, T.J., Nestorowicz, A., Amberg, S. M., and Rice, C.M., 1993. Mutagenesis of the yellow fever virus NS2B protein : effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. J. Virol. 67, 6797-6807.
    Chang, Y. –S., Liao, C. –L., Tsao, C. –H., Chen, M. –C., Liu, C. –I., Chen, L. –K., and Lin, Y. –L., 1999. Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. J. Virol. 73, 6257-6264.
    Chen, W.-R., Tesh, R.B., Rico-Hesse, R., 1990. Genetic variation of Japanese ence-
    phalitis virus in nature. J. Gen. Virol. 71, 2915-2922.
    Chen, W.-R., Rico-Hesse, R., Tesh, R.B., 1992. A new genotype of Japanese ence-
    phalitis virus from Indonesia. Am. J. Trop. Med. Hyg. 47, 61-69.
    Chen, C. –J., Kuo, M. –D., Chien, L. –J., Hsu, S. –L., Wang, Y. –L., and Lin, J. –H.,
    1997. RNA-protein interaction of NS3, NS5, and 3’Noncoding regions of Japan-
    ese encephalitis virus genomic RNA. J. Virol. 71, 3466-3473.
    Clarke, D.K., Duarte, E.A., Moya, A., Elena, S.F., Domingo, E., Holland, J.J., 1993.
    Genetic bottlenecks and population passages cause profound fitness differences
    in RNA viruses. J. Virol. 67, 222-228.
    Domingo, E., Escarmis, C., Sevilla, N., Moya, A., Elena, S.F., Quer, J., Novella, I.S.,
    Holland, J.J., 1996. Basic concepts in RNA virus evolution. FASEB. 10, 859-864.
    Domingo, E., 2000. Viruses at the edge of adaptation. Virology 270, 251-253.
    Eckels, K.H., Yu, Y.-X., Dubois, D.R., Marchette, N.J., Trent, D.W., Johnson, A.J.
    1988. Japanese encephalitis virus live-attenuated vaccine, Chinese strain SA14-
    14-2; adaptation to primary canine kidney cell cultures and preparation of a
    vaccine for human use. Vaccine 6, 513-518.
    Gorbalenya, A, E., Donchenko, A. P., Koonin, E. V., Blinov, V. M. 1989. N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res. 17, 3889-3897.
    Hase, T., Summers, P. L., Eckels, K. H., and Baze, W. B., 1987. Maturation process of Japanese encephalitis virus in cultured mosquito cells in vitro and mouse brain cells in vivo . Arch. Virol. 96, 135-151.
    Hase, T., Summers, P. L., and Ray, P., 1990. Entry and replication of Japanese encephalitis virus in cultured neurogenic cells. J. Virol. Methods. 30, 205-214.
    Hasegawa, H., Yoshida, M., Shiosaka, T., Fujita, S., Kobayashi, Y., 1992. Mutations
    in the envelope protein of Japanese encephalitis virus affect entry into cultured
    cells and virulence in mice. Virology 191, 158-165.
    Hashimoto, H., Nomoto, A., Watanabe, K., Mori, T., Takezawa, T., Hiramatsu, K.,
    1988. Molecular cloning and complete nucleotide sequence of the genome of
    Japanese encephalitis virus Beijing-1 strain. Virus Genes 1, 305-317.
    Hillis, D.M., Bull, J.J., 1993. An empirical test of bootstrapping as a method for
    accessing confidence in phylogenetic analysis. Syst. Biol. 42, 182-192.
    Hoke, C.H., Nisalak, A., Sangawhip, N., Jatanasen, S., Laorakapongse, T., Innis, B.L., Kotchase nee, S.-O., Gingrich, J.B., Latendresse, J., Fukai, K., Burke, D.S., 1988. Protection against Japanese encephalitis by inactivated vaccines. New Engl. J. Med. 319, 608-614.
    Holland, J.J., De La Torre, J.C., Clarke, D.K., Duarte, E., 1991. Quantitation of
    relative fitness and great adaptibility of clonal populations of RNA viruses. J. Virol
    . 65, 2960-2967.
    Huang, P.J., Huang, Y.H., Wu, P.H., Wu, Y.C., Chen, K.T., 1996. A survey of the clinical seque lae of Japanese encephalitis. Epidemiol. Bull. 12, 19-26.
    Huong, V.T.Q., Ha, D.Q., Deubel, V., 1993. Genetic study of Japanese encephalitis
    viruses from Vietnam. Am. J. Trop. Med. Hyg. 49, 538-544.
    Jan, L.-R., Chen, K.-L., Lu, C.-F., Wu, Y.-C., Horng, C.-B., 1996. Complete
    nucleotide sequence of the genome of Japanese encephalitis virus Ling strain : the
    presence of a 25-nucleotide deletion in the 3’-nontranslated region. Am. J. Trop.
    Med. Hyg. 55, 603-609.
    Koonin, E. V., and Dolja, V. V., 1993. Evolution and taxonomy of positive strand RNA viruses : implications of comparative analysis of amino acid sequences. Critical Reviews in Biochemestry and Molecular Biology 28, 375-430.
    Leitmeyer, K.C., Vaughn, D.W., Watts, D.M., Salas, R., Villalobos De Chacon, I.,
    Ramos, C., Rico-Hesse, R., 1999. Dengue virus structural differences that
    correlate with pathogenesis. J. Virol. 73, 4738-4747.
    Li, H., Clum, S., You, S., Ebner, K.E., Padmanabhan, R., 1999. The serine protease
    and RNA helicase functional domains of dengue virus type 2 NS3 converge
    within a region of 20 amino acids. J. Virol. 73, 3108-3116.
    Liou, M. –L., Hsu, C. –Y., 1998. Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain. Cell. Tissue. Res. 293, 389-394.
    Lobigs, M., Usha, R., Nestorowicz, A., Marshall, I.D., Weir, R.C., Dalgarno, L., 1990.
    Host cell selection of Murray Valley encephalitis virus variants altered at an RGD
    sequence in the envelope protein and in mouse virulence. Virology 176, 587-595.
    Lobigs, M., 1993. Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc. Natl. Acad. Sci. USA. 90, 6218-6222.
    Ma, S. P., Arakaki, S., Makino, Y., and Fukunaga, T., 1996. Molecular epidemiology of Japanese encephalitis virus in Okinawa. Microbiol. Immunol. 40(11), 847-885.
    Mangada, M.N.M., Takagami, T., 1999. Molecular characterization of the Japanese
    encephalitis virus representative immunotype strains JaGAr01. Virus Res. 59, 101-
    112.
    Maree, A.F., Keulen, W., Boucher, C.A., De Boer, R.J., 2000. Estimating relative
    fitness in viral competetion experiments. J. Virol. 74, 11067-11072.
    McAda, P.C., Mason, P.W., Schmaljohn, C.S., Dalrymple, J.M., Manson, T.L.,
    Fournier, M.J., 1987. Partial nucleotide sequence of the Japanese encephalitis
    virus genome. Virology 158, 348-360.
    McMinn, P.C., 1997. The molecular basis of virulence of the encephalitogenic
    flaviviruses. J. Gen. Virol. 78, 2711-2722.
    Mitamura, T., Kitaoka, M and Watanabe M., 1936. Study on Japanese encephalitis virus : animal experiments and mosquito transmission experiments. Kansai Iji. 1, 260.
    Monath, T.P., Heinz, F.X., 1996. Flaviviruses. In: Fields, B.N., Knipe, D.M.,
    Howley, P.M., (Eds.) Fields Virology, third ed. Lippicott-Raven, Philadelphia, pp.
    961-1034.
    Ni, H., Burns, N.J., Chang, G-J.J., Zhang, M.-J., Wills, M.R., Trent, D.W., Sanders, P.
    G,Barrett, D.T., 1994. Comparision of nucleotide and deduced amino acid sequence
    of the 5’ non-coding region and structural protein genes of the wild-type Japanese
    encephalitis virus strain SA14 and its attenuated vaccine derivatives. J. Gen. Virol.
    75, 1505-1510.
    Ni, H., Barrett, A.D.T., 1995. Nucleotide and deduced amino acid sequence of the
    structural protein genes of Japanese encephalitis viruses from different geographi-
    cal locations. J. Gen. Virol. 76, 401-407.
    Ni, H., Chang, G-J.J., Xie, H., Trent, D.W., and Barrett, A.D.T., 1995. Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14. J. Gen. Virol. 76, 409-413.
    Ni, H., Barrett, A.D.T., 1996. Molecular differences between wild-type Japanese
    encephalitis virus strains of high and low mouse neuroinvasiveness. J. Gen. Virol.
    77, 1449-1455.
    Ni, H., and Barrett, A.D.T., 1998. Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape mutant. Virology 241, 30-36.
    Nitayaphan, S., Grant, J.A., Chang, G-J.J., Trent, D.W., 1990. Nucleotide sequence
    of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated
    vaccine derivative, SA-14-14-2. Virology 177, 541-552.
    Novella, I.S., Quer, J., Domingo, E., Holland, J.J., 1999. Exponential fitness gains
    of RNA virus populations are limited by bottleneck effects. J. Virol. 73, 1668-
    1671.
    Novella, I.S., Duarte, E.A., Elena, S.F., Moya, A., Domingo, E., Holland, J.J., 1995.
    Exponential increases of RNA virus fitness during large population transmissions.
    Proc. Natl. Acad. Sci. U.S.A. 92, 5841-5844.
    Ogata, A., Nagashima, K., Hall, W, W., Ichikawa, M., Kimura-kuroda, J., and Yasui, K., 1991. Japanese encephalitis virus neurotropism is dependent on the degree of neuronal maturity. J. Virol. 65, 880-886.
    Paranjpe, S., Banerjee, K., 1996. Phylogenetic analysis of the envelope gene of
    Japanese encephalitis virus. Virus Res. 42, 107-117.
    Pletnev, A. G., Bray, M. & Lai, C. –J., 1993. Chimeric tick-borne encephalitis and dengue type 4 viruses : effects of mutations on neurovirulence in mice. J. Virol. 67, 4956-4963.
    Poidinger, M., Hall, R. A., and Mackenzie, J. S., 1996. Molecular characterization of the Japanese encephalitis serocomplex of the Flavivirus genus. Virology 218, 417-421.
    Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C & Harrison, S.C., 1995. The envelope
    glycoprotein from tick-borne encephalitis virus at 2A resolution. Nature 375, 291-
    298.
    Rice, C.M., Lenches, E. M., Eddy, S. R., Shin, S. J., Sheets, R. L., and Strauss, J. H., 1985. Nucleotide sequence of yellow fever virus implications for flavivirus gene expression and evolution. Science 229, 726-733.
    Rice, C.M., 1996. Flaviviridae: the virus and their replication. In: Fields, B.N.,
    Knipe, D.M.,Howley, P.M., (Eds.) Fields Virology, third ed. Lippicott-Raven,
    Philadelphia, pp. 931-959.
    Rico-Hesse, R., 1990. Molecular evolution and distribution of dengue virus type1 and 2 in nature. Virology 174, 479-493.
    Ritchie, S.A.,Phillips, D., Broom, A., Mackenzie, J., Poldinger, M., Hurk, A.V.D.,
    1997. Isolation of Japanese encephalitis virus from Culex annultrostris in
    Australia. Am. J. Trop. Med. Hyg. 56, 80-84.
    Ruiz-Linares, A., Cahour, A., Girard, M., Bouloy, M., 1989. Processing of the yellow fever virus polyprotein : role of the cellular proteases in the maturation of the structural proteins. J. Virol. 63, 4199-4209.
    Ryan, M.D., Monaghan, S., Flint, M., 1998. Virus-encoded proteinases of the
    Flaviviridae. J. Gen. Virol. 79, 947-959.
    Sumiyoshi, H., Mori, C., Fuke, I., Morita, K., Kuhara, S., Kondou, J., Kikuchi, Y.,
    Nakamatu, H. , and A. Igarashi., 1987. Complete nucleotide sequence of the
    Japanese encephalitis virus genome RNA. Virology 161, 497-510.
    Sumiyoshi, H., Tignor, G. H. & Shope, R. E., 1995. Characterization of a highly attenuated Japanese encephalitis virus generated from molecularly cloned cDNA. J. Infect. Dis. 171,1141-1151.
    Tsai, T.F. and Yu, Y.X. (1994) Japanese encephalitis vaccines in Vaccines, 2rd. Edited By S.A. Plotkin and E.A. Mortimer, Jr. W.B. Saunders Company,Pennsylvania,USA.
    Tsarev, S.A., Sander, M.L., Vaughn, D.W., Innis, B.L., 2000. Phylogenetic analysis
    suggests only one serotype of Japanese encephalitis virus . Vaccine 18, 36-43.
    Tsuchie, H., Oda, K., Vythilingram, I., Thayan, R., Vijayamalar, B., Sinniah, M.,
    Singh, J., Wada, T., Tanaka, H., Kurimura, T., Igarashi, A., 1997. Genotypes of
    Japanese encephalitis virus isolated in three states in Malaysia. Am J. Trop. Med.
    Hyg. 56, 153-158.
    Utama, A., Shimizu, H., Morikawa, S., Hasebe, F., Morita, K., Igarashi, A., Hatsu, M.
    K.Takamizawa, and T. Miyamura., 2000. Identification and characterization of the
    RNA helicase activity of Japanese encephalitis virus NS3 protein. FEBS Letters
    465, 74-78.
    Vladimir, F. Y., and Richard, W. C., 1995. Formation of the Flavivirus envelope : role of the viral NS2B-NS3 protease. J. Virol. 69, 1995-2003.
    Vrati, S., Giri, R.K., Razdan, A., Malik, P., 1999. Complete nucleotide sequences of
    an Indian strain of Japanese encephalitis virus : sequence comparison with other
    strains and phylogenetic analysis. Am. J. Trop. Med. Hyg. 61, 677-680.
    Wallner, G., Mandl, C.W., Ecker, M., Holzmann, H., Stiasny, K., Kunz, C.Heinz, F.X.
    , 1996. Characterization and complete genome sequences of high- and low-
    virulence variants of tick-borne encephalitis virus. J. Gen. Virol. 77, 1035-1042.
    Wang, J. J., Liao, C. L., Yang, C. I., Chiou, Y, W., Chiou, C. T., Huang, Y, L., Chiou, S. Y., and Chen, L. K, 1997. Ultrastructure and localization of viral E proteins in neuronal cells infected with Japanese encephalitis virus. Virology 238, 30-39.
    Wang, J. J., Liao, C. L., Yang, C. I., Lin, Y. L., Chiou, C. T., and Chen, L. K, 1998. Localization of NS3 and E proteins in mouse brain infected with mutant strain of Japanese encephalitis virus. Arch. Virol. 143, 2353-2369.
    Weaver, S.C., Brault, A.C., Kang, W., Holland, J.J., 1999. Genetic and fitness
    changes accompanying adaptation of an arbivirus to vertebrate and invertebrate
    cells. J. Virol. 73, 4316-4326.
    Wengler, G., and Wengler, G., 1993. The NS3 non-structural protein of flavivirus contains an RNA triphosphatase activity. Virology 197, 265-373.
    Williams, D.T., Wang, L.-F., Daniels, P.W., Mackenzie, J.S., 2000. Molecular chara-
    terization of the first Australian isolate of Japanese encephalitis virus, the FU
    strain. J. Gen. Virol. 81, 2471-2480.
    Wu, S.-C., Lian, W.-C., Hsu, L.-C., Liau, M.-Y., 1997. Japanese encephalitis virus
    antigenic variants with characteristic differences in neutralization resistance and
    mouse virulence. Virus Res. 51, 173-181.
    Wu, S.-C., Lian, W.-C., Hsu, L.-C., Liau, M.-Y., 1998. Antigenic characterization of
    nine wild-type Taiwanese isolation of Japanese encephalitis virus as compared
    with two vaccine strains. Virus Res. 55, 83-91.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE