簡易檢索 / 詳目顯示

研究生: 吳 洋
Yang Wu
論文名稱: 擴散阻障層與金屬離子接觸置換反應之研究及其在積體電路工業上之應用
Contact Displacement of Diffusion Barrier Layer by Metal Ion and Its Application on IC Process
指導教授: 萬其超
Chi-Chao Wan
王詠雲
Yung-Yun Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 英文
論文頁數: 103
中文關鍵詞: 擴散阻障層接觸置換積體電路電鍍內連線
外文關鍵詞: diffusion barrier layer, contact displacement, IC, electrodeposition, interconnection
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了配合體積更小、效能更高的積體電路,內連線的製作必須要能達到深次微米的要求。然而因電阻及電遷移阻抗等性質,在傳統製程中所使用的鋁金屬已不再具有絕對的優勢。相對的,銅金屬則具有低電阻、較高的融點及較佳的電遷移阻抗等優點,而原先無法使用乾式蝕刻製程的缺點及擴散到氧化層的問題也已藉由金屬鑲嵌技術的開發及擋層材料的研究發展而克服,可說已被視為下一世代IC內連線的最佳物質。
    而在以電鍍方式沈積銅層之前,必須先在矽晶圓上先以濺鍍或化學氣相沈積的方式沈積上一層擴散阻障層及銅金屬的晶種層薄膜。擴散阻障層的材料目前多以氮化鈦或是氮化鉭為主,其目的主要在阻止銅金屬與介電層二氧化矽之間的擴散作用。而銅晶種層則是作為電鍍時導電之用。我們在實驗中發現,阻障層材料會與溶液中的金屬離子發生接觸置換反應,而使得基材表面沈積上一層金屬層。我們一方面希望能藉此研究確認各種阻障層材料的可靠性,以期能夠對於現有的積體電路銅製程發展上有所助益。另一方面更可藉由此置換反應直接沈積上金屬作為電鍍時的晶種層,以減少為沈積銅晶種層在PVD或CVD真空設備上的花費。

    目前初步的實驗結果發現,銅、銀及鈀三種金屬離子都能在含有BHF的溶液中與氮化鈦薄膜進行接觸置換的反應,而氮化鉭薄膜則僅在同時含有鈀離子及氟離子的溶液中反應。對於擴散阻障層的材料功用而言,氮化鉭較之氮化鈦要來的更為穩定。下表為各種不同溶液組成中,金屬離子與基材間的反應情形。

    Solution Si TiN film TiN powder TaN film Ti

    F- / Cu2+ ○ ○ × × ○

    F- / Ag+ ○ ○ ○ × ○

    F- / Pd2+ ○ ○ ○ ○ ○

    BHF ※ × × × ※

    Cu2+ × × × × ○

    Ag+ × × × × ○

    Pd2+ × × × × ○

    反應時間:15分鐘 反應溫度:20℃

    ○ 表示金屬離子還原並沈積於基材上

    ×表示無任何反應發生

    ※ 表示基材表面遭到溶液之腐蝕

    由上表可發現矽基材亦只在氟離子存在下與各金屬離子發生置換反應,可知氟離子在各置換反應中均扮演極為關鍵的角色且此類反應將不同於鈦與金屬離子間單純的氧化還原反應。因此,我們藉由各種分析儀器來探討有關此一反應可能之反應機構。在本篇研究中,我們提出三種有關氮化鈦薄膜置換反應可能的反應機構並藉由實驗結果探討各機構的合理性,並分別對矽基材,氮化鉭及氮化鈦之置換反應提出一最有可能之反應方程式。此外,我們也發現KI及NaI可取代BHF來驅動鈀離子與氮化鈦間之置換反應且不會如氟離子般造成基材之腐蝕。

    在置換反應的應用方面,我們發現經由置換反應,可在適當的溶液組成及溫度條件下沈積一層緻密的鈀金屬層在氮化鉭表面。此一鈀層可作為後續銅電鍍製程中導電所需的晶種層,相對於未處理之氮化鉭基材並可增加鍍銅層在氮化鉭表面之鍍著面積。


    The fabrication of interconnect has become an essential part of IC industry in recent years. In order to improve the function and efficiency of a chip, the dimension of interconnect must be shrunk to deep submicron. Copper is regarded as the best conducting material for interconnect in the next generation by virtue of its lower resistivity, higher melting point, and better electromigration endurance. Moreover, some drawbacks in the application of copper have already been overcome, e.g., the development of barrier layer material which solves the problem of thermal diffusion between copper and silicon oxide.
    Before the electrodeposition of copper, a diffusion barrier layer and copper seed layer must be deposited on top of the silicon wafer by PVD or CVD process. Titanium nitride and tantalum nitride are majorly used as the material for barrier layer in order to prevent the whole structure from thermal diffusion. Besides, seed layer was used to conduct electricity in electrodeposition process.

    It was found that nitride barrier material could react with some metal ions by contact displacement and deposit metal upon silicon substrate. The research of contact displacement reaction is therefore useful for evaluating the reliabilty of titanium nitride and tantalum nitride as barrier layer. Additionally, if copper can be deposited directly through this reaction or other electrochemical methods without seed layer, the cost of vaccum facilities accompanied with PVD or CVD process can be saved. The following table shows the results of different solutions in contact with various substrates.

    Solution Si TiN film TiN powder TaN film Ti

    F- / Cu2+ ○ ○ × × ○

    F- / Ag+ ○ ○ ○ × ○

    F- / Pd2+ ○ ○ ○ ○ ○

    BHF ※ × × × ※

    Cu2+ × × × × ○

    Ag+ × × × × ○

    Pd2+ × × × × ○

    Time: 15 minutes. Temp: 20℃.

    Symbol ○ represents that the deposition of metal was observed.

    Symbol ×represents that no reaction was observed.

    Symbol ※ represents that the corrosion of substrate was observed.

    It can be seen that TiN film can react with Cu2+, Ag+, and Pd2+ in the presence of fluoride ion, while TaN film reacts with Pd2+ and F- only. Further more, metal deposition on silicon sample also takes place only when the fluoride ion exists. Thus, we concluded that fluoride ion should play an essential role in displacement reaction in all cases, which is not a simple redox reaction like the Mz+-Ti couple. In addition, the details of contact displacement reaction can be studied with the aid of some instruments, such as XRD, ESCA, SEM, and IR Spectroscopy. Three possible mechanisms of TiN displacement reaction were proposed in this study based on the results of experiments. Besides, KI and NaI were found to activate the palladium displacement without corrosion on TiN, which is superior to BHF if Pd is applied to serve as seed layer for subsequent copper deposition. Furthermore, palladium deposition atop TaN by contact displacement was found to serve as a platform or seed layer for subsequent copper electrodeposition.

    摘要.......................................................................................................................................................Ⅰ Abstract.................................................................................................................................................Ⅲ Contents.................................................................................................................................................Ⅴ List of Figures......................................................................................................................................Ⅶ List of Tables.......................................................................................................................................Ⅵ Chapter 1 Introduction..........................................................................................................................1 Chapter 2 Literature Review...............................................................................................................5 2.1 Metallic material for IC interconnection process....................................................................5 2.2 Technology of copper wiring structure in ULSI......................................................................11 2.3 Diffusion barrier layer material for IC interconnection.........................................................19 2.4 Copper deposition by contact displacement and its related researches................................24 2.5 Motivation and objective of this research.................................................................................25 Chapter 3 Experimental........................................................................................................................31 3.1 Conceptual diagram of this research..........................................................................................31 3.2 Flow diagram of experimental procedures................................................................................32 3.3 Chemical agents and equipment.................................................................................................33 3.4 Analytic instruments....................................................................................................................37 3.5 Contact displacement test for metal ions..................................................................................38 3.6 Possible mechanism of contact displacement reaction...............................................................39 3.7 Electrodeposition on seed layer by contact displacement.......................................................40 Chapter 4 Results and discussion........................................................................................................41 4.1 Properties of barrier material.......................................................................................................41 4.2 Trial of displacement reaction by different metal ions........................................................... 46 4.3 Identification of displacement reaction on TiN surface..........................................................49 4.4 Identification of displacement reaction on TaN surface...........................................................57 4.5 Possible mechanism of contact displacemt reaction..................................................................62 4.6 The role of fluoride ion in displacement reaction.......................................................................71 4.7 Electrodeposition of copper on seed layer prepared by displacement reaction......................88 Chapter 5 Conclusion.............................................................................................................................96 Chapter 6 Reference..............................................................................................................................99

    1. H.S. Rathore and D. Nguyen, "Effect of Scaling of Interconnection", Copper metallization for Sub-Micron Integrated, 8 (1998).
    2. S-P Heng et al, International Symposium on VLSI TSA, p.164 (1995).
    3. S.M. SZE, Semiconductor Devices Physics and Technology, p.605, John Wiley & Sons (1985).
    4. 陳來助, "ULSI超大型積體電路之銅導線技術", 電子與材料, 1, 85 (1998).
    5. Panos C.Andricacos, "Copper On-Chip Interconnections A Break-through in Electrodeposition to Make Better Chips", The Electrochemical Society, 32-39 (1999)
    6. Robert J. Contolini, Lisa Tarte, Robert, T. Graff, and Lee B. Evans, "Copper Electroplating process for sub-half-micron ULSI structures", VMIC Conference, 27-29 (1995).
    7. H.S. Rathore and D. Nguyen, "Methods for Depositing Copper Metallurgy", Copper metallization for Sub-Micron Integrated, 29-44 (1998).
    8. Robert J. Contolini, Lisa Tarte, Robert T. Graff, and Lee B. Evans, "Copper Electroplating process for sub-half-micron ULSI structures", VMIC Conference, 27-29 (1995).
    9. V.M.Dubin, C.H. Ting and R. Cheung, "Electro-chemical deposition of copper for ULSI metallization", VMIC Conference, 10-12 (1997).
    10. Wolf, S., "Silicon Processing for VLSI Era", (1990).
    11. Cairncross, A., Sheppard, W. A., J. Am. Chem. Soc., 93, 247 (1971).
    12. Whitesides, G. M., Panek, E. J., Stedronsky, E. R., J. Am. Chem. Soc., 94, 232 (1972).
    13. Tamura, M., Kochi, J., J. Organomet. Chem., 42, 205 (1972).
    14. Whitesides, G., Stedronsky, . R., Casey, C. P., San Filippo, J., J. Am. Chem. Soc., 91, 1426 (1970).
    15. Ikaria, T., Yamamoto, A., J. Organomet. Chem., 72, 145 (1974).
    16. Miyashita, A., Yamamoto, A., Bul. Chem. Soc. Jpn., 50, 1102 (1977).
    17. Jeffries, P.M., Girolami, G.S., Chem. Mater., 1, 8 (1989).
    18. Jain, A., Chi, K.M., Hampden-Smith, M. J., Kodas, T. T., Paffett, M. F., Farr, J. D., J. Electrochem. Soc., 140, 1434 (1993).
    19. Gross, M. E., Donnelly, V. M., Advanced Metallization for ULSI Applications, Materials Research Society, 355 (1991).
    20. Kwakman, L.F.Tz., Huibergtse, D., Piekaar, H. W., Granneman, E. H. A., Cheung, K. P., Case, C.J., Liu, R., Schutz, R.J., Wagner, R.S., proc. 7th IEEE VLSI Multilevel Interconnect Conference (1990).
    21. Baum, T. H., Larson, C. E., May G., J. organomet. Chem., 425, 189 (1992).
    22. Toivo T. Kodas, The Chemistry of Metal CVD, p.9-14, Weinheim, N.Y. (1994).
    23. Valery M. Dubin,"Selective Electroless Ni-Cu(P) Deposition for Via Hole Filling and Conductor Pattern Cladding in VLSI Multilevel Interconnection Stuctures", The Electrochemical Society, 139, 633-638(1992).
    24. Valery M. Dubin and Yosi Shacham-Diamand,"Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration", The Electrochemcial Society, 144, 898-908,(1997).
    25. Valery M. Dubin, Yosi Shacham-Diamand,"Selective and blanket electroless Cu plating initiated by contact displacement for deep submircon via contact filling",VMIC conference,June(1995),27-29.
    26. C.H. Ting, M. Paunovic, P. L. Pai, G. Chiu, "Selective Electroless Metal deposition for via hole filling in VLSI multilevel interconnection structures", J. Electrochem. Soc, 136, February, 462-466 (1989).
    27. 林麗娟,"新SEM成像技術在材料科技的應用",工業材料,106, 79
    28. 林麗娟,"X光分析技術之產業應用",工業材料,106, 59
    29. 林麗娟,"AES/ESCA表面分析技術於工業材料上的應用",工業材料,106, 69
    30. 萬其超,"鍍層之性質",電路板資訊,29, 46
    31. S. Schiller, G. Beister, and W. Siever, "Reactive High Rate D.C.Sputtering : Deposition Rate, Stoichiometry and Features of TiOx and TiNx Films with Respect to the Target Mode", Thin Solid Films, 111, 259-268 (1984).
    32. G. S. Sandhu, S. G. Meikle, and T.T. Doan, "Metalorganic Chemical Vapor Diposition of TiN Films for Advanced Metallization", Appl. Phys. Lett., 62, 240-242 (1993).
    33. M. H. Staia, E. S. Puchi, D. B. Lewis, J. Cawley, and D. Morel, "Microstructural characterization of chemically vapor deposited TiN coating", Surface & Coatings Technology, 86-87, 432-437 (1996).
    34. Pau Gorostiza, M. Anbu Kulndainathan, Fausto Sanz, et al., "Charge exchange proesses during the open-curcuit deposition of nickel on silicon from fluoride solutions", J. Electrochem. Soc, 147, 1026-1030 (2000).
    35. M. H. Tsai, S. C. Sun, C. P. Lee, H. T. Chiu, and S. C. Wu, "Metal-organic chemical vapor deposition of tantalum nitride barrier layers for ULSI applications", Thin solid films, 270, 531-536 (1995).
    36. Kwang-Nam Cho, Chang-Hee Han, Kyung-Bong Noh, and Jong Gil Lee, "Remote Plasma-Assisted Metal Organic Chemical Vapor Deposition of Tantalum Nitride Thin Films with Different Radicals", Jpn. J. Appl. Phys., 37, 6502-6505 (1998).
    37. K. C. Walter, R. P. Fetherston, K. Sridharan, A. Chen, and J. R Conrad, "Sputter Deposition of Tantalum-Nitride Films on Copper Using An RF-Plasma", Materials Research Bulletin, 29, 827-832 (1994).
    38. K. Baba, R. Hatada, "Synthesis and Properties of Tantalum Nitride Films Formed By Ion Beam Assisted Deposition", Surface and Coatings Technology, 84, 429-433 (1996).
    39. H.P Fung and C.C Wan, "Possibility of direct Electrochemical Coper Deposition", 195th Electrochemical Society Annual Meeting, Seattle (1999).
    40. Nao Takano, Naohiro Hosoda, Taro Yamada, and Tetsuya Osaka, "Mechanism of the Chemical Deposition of Nickel on Silicon Wafers in Aqueous Solution", Journal of The Electrochemical Society, 146, 1407-1411 (1999).
    41. M.K. Lee, J.J. Wang and H.D. Wang, "Deposition of copper films on silicon from cupric sulfate and hydrofluoric acid", J. Electrochem. Soc., 144, May, 1777-1779 (1997)
    42. Thomas C. Franklin, "Some mechanisms of the action of additives in electrodeposition prosesses", Plating and Surface Finishing, 30, 415 (1987).
    43. 楊欽雄博士論文, "非導體表面直接電鍍銅之研究", 國立清華大學
    44. Joseph P. O'Kelly et al., "Room temperature electroless plating copper seed layer process for damascene interlevel metal structures", Microelectronic Engineering, 50, 473-479 (2000).
    45. Kurtz et al., "Chemical vapor deposition of titanium nitride at low temperatures", Thin Solid Films, 140, 277-290 (1986).
    46. W.J. Garceau et al., "TiN as a diffusion barrier in the Ti-Pt-Au beam-lead metal system", Thin Solid Films, 60, 237 (1979).
    47. F. Fairbrother et al., The chemistry of niobium and tantalum, p.671-675, Elsevier Pub. Co., N.Y. (1967).
    48. D.F. Shriver, P.W. Atkins, and C.H. Langford, Inorganic chemistry, p.43-45, Oxford University Press (1994).
    49. Inorganic Crystal Structure Database (ICSD), Institute for Inorganic Chemistry of the University of Bonn, Gmelin Institute, Fachinformationszentrum Karlsruhe (FIZ), German (1998).
    50. Ron Jenkins et al., Alphabetical index inorganic phases, International centre for diffraction data, Swarthmore (1989).
    51. 馮憲平碩士論文, "電化學程序沈積超大型積體電路銅內連線之研究", 國立清華大學
    52. SirGeoffrey Wilkinson et al., Comprehensive coordination chemistry, Oxford, N.Y. (1987).
    53. Hitoshi Morinaga et al., "A model for the electrochemical deposition and removal of metallic impurities on Si surfaces", IEICE TRANS. ELECTRON, E79-C, 343-362 (1996).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE