研究生: |
黃彥凱 Huang, Yen Kai |
---|---|
論文名稱: |
Tranilast藥物可阻絕S100A11蛋白與RAGE V domain之交互作用並抑制細胞增生 Tranilast blocks the interaction between the protein S100A11 and Receptor for Advanced Glycation End Product (RAGE) V Domain and inhibits cell proliferation |
指導教授: |
余靖
Yu, Chin |
口試委員: |
莊偉哲
Chuang, Woei Jer 陳金榜 Chen, Chin Pan |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | S100A11蛋白 、RAGE V domain蛋白 、Tranilast藥物 、核磁共振 、細胞增生 、蛋白複合物 、蛋白質純化 |
外文關鍵詞: | S100A11 protein, RAGE V domain, Tranilast drug, NMR, cell proliferation, protein complex, protein purification |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類S100A11蛋白為S100蛋白家族中的其中一員,在水溶液下為一雙聚體蛋白質,其具有兩個可與鈣離子結合的EF-hand位置,S100A11與鈣離子結合後會發生構型上的改變,進而與目標蛋白交互作用,而RAGE(Receptor for Advanced Glycation Endproducts)中的V domain就是其中一種目標蛋白,然而研究指出,在許多癌症中發現S100A11蛋白都有異常的過量表現。RAGE屬於一種位於細胞膜上的免疫球蛋白,與不同配體結合後,進而誘導細胞產生訊息傳遞的現象,其與許多疾病有關,例如發炎現象、糖尿病等。Tranilast 最早是一種用於治療兒童支氣管哮喘的藥物,目前已被證實能夠抑制細胞的增生。
本篇論文中,我們利用NMR技術,探討S100A11和V domain在水溶液下的結構,經過HSQC滴定實驗,分別找出S100A11-V domain複合物相互作用區域及S100A11-Tranilast作用的區域,並利用HADDOCK軟體解出S100A11-V domain及S100A11-Tranilast之複合物結構模型。結果顯示S100A11用來與V domain及Tranilast作用的區域相似,故推測Tranilast能夠阻擋S100A11-V domain作用。最後利用螢光滴定求得複合物Kd,以及利用WST-1 assay 證實此訊息傳遞所產生的細胞增生確實是經由S100A11-V domain作用所造成,而Tranilast也能夠阻隔S100A11與RAGE V domain的交互作用,降低細胞訊息傳遞,進而降低疾病發生。本研究對於S100蛋白與V domain的作用有更進一步的了解,並利於往後研發有潛力的衍生藥物或新藥來達到更有效的抑制效果。
The human S100 calcium-binding protein A11 (S100A11) is a member of S100 protein family. Once S100A11 proteins bind to calcium ions at EF-hand motifs, S100A11 will change its conformation promoting interaction with target proteins. The receptor for advanced glycation end products (RAGE) consists of three extracellular domains, including V domain, C1 domain and C2 domain. In this case, V domain is the target for mS100A11 binding. RAGE binds to the ligands result in cell proliferation, cell growth and several signal transduction cascades.
We used NMR and fluorescence spectroscopy to demonstrate the interactions between S100A11 and V domain. The Tranilast molecule is a drug used for treating allergic disorders. We found out that V domain and Tranilast would interact with S100A11 by using 1H-15N HSQC NMR titrations. According to the results, we obtained two binary complex models from the HADDOCK program, S100A11-RAGE V domain and S100A11-Tranilast, respectively. We superimposed these two models with the same orientation of S100A11 homodimer and demonstrated that Tranilast molecule would block the binding site between S100A11 and V domain. We further utilized the WST-1 assay to indicate that Tranilast indeed can inhibit the cell proliferation which is induced by the S100A11-V domain interaction. These results will be potentially useful in the development of derivative or new anti-cancer drugs for RAGE-dependent diseases.
1. Linge JP, Habeck M, Rieping W, Nilges M. Aria: Automated noe assignment and nmr structure calculation. Bioinformatics 2003:19(2): 315-316.
2. Nilges M, Macias MJ, O'Donoghue SI, Oschkinat H. Automated noesy interpretation with ambiguous distance restraints: The refined nmr solution structure of the pleckstrin homology domain from beta-spectrin. J Mol Biol 1997:269(3): 408-422.
3. Schafer BW, Heizmann CW. The s100 family of ef-hand calcium-binding proteins: Functions and pathology. Trends Biochem Sci 1996:21(4): 134-140.
4. Heizmann CW, Fritz G, Schafer BW. S100 proteins: Structure, functions and pathology. Front Biosci 2002:7(d1356-1368.
5. Sedaghat F, Notopoulos A. S100 protein family and its application in clinical practice. Hippokratia 2008:12(4): 198-204.
6. Kiryushko D, Novitskaya V, Soroka V, Klingelhofer J, Lukanidin E, Berezin V, Bock E. Molecular mechanisms of ca(2+) signaling in neurons induced by the s100a4 protein. Mol Cell Biol 2006:26(9): 3625-3638.
7. Leukert N, Vogl T, Strupat K, Reichelt R, Sorg C, Roth J. Calcium-dependent tetramer formation of s100a8 and s100a9 is essential for biological activity. J Mol Biol 2006:359(4): 961-972.
8. Moroz OV, Dodson GG, Wilson KS, Lukanidin E, Bronstein IB. Multiple structural states of s100a12: A key to its functional diversity. Microsc Res Tech 2003:60(6): 581-592.
9. Ostendorp T, Leclerc E, Galichet A, Koch M, Demling N, Weigle B, Heizmann CW, Kroneck PM, Fritz G. Structural and functional insights into rage activation by multimeric s100b. Embo j 2007:26(16): 3868-3878.
10. Tarabykina S, Kriajevska M, Scott DJ, Hill TJ, Lafitte D, Derrick PJ, Dodson GG, Lukanidin E, Bronstein I. Heterocomplex formation between metastasis-related protein s100a4 (mts1) and s100a1 as revealed by the yeast two-hybrid system. FEBS Lett 2000:475(3): 187-191.
11. Rustandi RR, Baldisseri DM, Inman KG, Nizner P, Hamilton SM, Landar A, Landar A, Zimmer DB, Weber DJ. Three-dimensional solution structure of the calcium-signaling protein apo-s100a1 as determined by nmr. Biochemistry 2002:41(3): 788-796.
12. Wang G, Zhang S, Fernig DG, Spiller D, Martin-Fernandez M, Zhang H, Ding Y, Rao Z, Rudland PS, Barraclough R. Heterodimeric interaction and interfaces of s100a1 and s100p. Biochem J 2004:382(Pt 1): 375-383.
13. Korndorfer IP, Brueckner F, Skerra A. The crystal structure of the human (s100a8/s100a9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting alpha-helices can determine specific association of two ef-hand proteins. J Mol Biol 2007:370(5): 887-898.
14. Allen BG, Durussel I, Walsh MP, Cox JA. Characterization of the ca2+-binding properties of calgizzarin (s100c) isolated from chicken gizzard smooth muscle. Biochem Cell Biol 1996:74(5): 687-694.
15. Schonekess BO, Walsh MP. Molecular cloning and expression of avian smooth muscle s100a11 (calgizzarin, s100c). Biochem Cell Biol 1997:75(6): 771-775.
16. Hung KW, Chang YM, Yu C. Nmr structure note: The structure of human calcium-bound s100a11. J Biomol NMR 2012:54(2): 211-215.
17. Dempsey AC, Walsh MP, Shaw GS. Unmasking the annexin i interaction from the structure of apo-s100a11. Structure 2003:11(7): 887-897.
18. Rintala-Dempsey AC, Santamaria-Kisiel L, Liao Y, Lajoie G, Shaw GS. Insights into s100 target specificity examined by a new interaction between s100a11 and annexin a2. Biochemistry 2006:45(49): 14695-14705.
19. Murzik U, Hemmerich P, Weidtkamp-Peters S, Ulbricht T, Bussen W, Hentschel J, von Eggeling F, Melle C. Rad54b targeting to DNA double-strand break repair sites requires complex formation with s100a11. Mol Biol Cell 2008:19(7): 2926-2935.
20. Cecil DL, Johnson K, Rediske J, Lotz M, Schmidt AM, Terkeltaub R. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J Immunol 2005:175(12): 8296-8302.
21. Liu XG, Wang XP, Li WF, Yang S, Zhou X, Li SJ, Li XJ, Hao DY, Fan ZM. Ca2+-binding protein s100a11: A novel diagnostic marker for breast carcinoma. Oncol Rep 2010:23(5): 1301-1308.
22. Meding S, Balluff B, Elsner M, Schone C, Rauser S, Nitsche U, Maak M, Schafer A, Hauck SM, Ueffing M et al. Tissue-based proteomics reveals fxyd3, s100a11 and gstm3 as novel markers for regional lymph node metastasis in colon cancer. J Pathol 2012:228(4): 459-470.
23. Xiao MB, Jiang F, Ni WK, Chen BY, Lu CH, Li XY, Ni RZ. High expression of s100a11 in pancreatic adenocarcinoma is an unfavorable prognostic marker. Med Oncol 2012:29(3): 1886-1891.
24. Anania MC, Miranda C, Vizioli MG, Mazzoni M, Cleris L, Pagliardini S, Manenti G, Borrello MG, Pierotti MA, Greco A. S100a11 overexpression contributes to the malignant phenotype of papillary thyroid carcinoma. J Clin Endocrinol Metab 2013:98(10): E1591-1600.
25. Liu Y, Han X, Gao B. Knockdown of s100a11 expression suppresses ovarian cancer cell growth and invasion. Exp Ther Med 2015:9(4): 1460-1464.
26. Memon AA, Sorensen BS, Meldgaard P, Fokdal L, Thykjaer T, Nexo E. Down-regulation of s100c is associated with bladder cancer progression and poor survival. Clin Cancer Res 2005:11(2 Pt 1): 606-611.
27. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 1992:267(21): 14987-14997.
28. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992:267(21): 14998-15004.
29. Dattilo BM, Fritz G, Leclerc E, Kooi CW, Heizmann CW, Chazin WJ. The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry 2007:46(23): 6957-6970.
30. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J et al. Rage and amyloid-beta peptide neurotoxicity in alzheimer's disease. Nature 1996:382(6593): 685-691.
31. Stern DM, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation endproducts (rage) and the complications of diabetes. Ageing Res Rev 2002:1(1): 1-15.
32. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 2004:63(4): 582-592.
33. Logsdon CD, Fuentes MK, Huang EH, Arumugam T. Rage and rage ligands in cancer. Curr Mol Med 2007:7(8): 777-789.
34. Kuniyasu H, Oue N, Wakikawa A, Shigeishi H, Matsutani N, Kuraoka K, Ito R, Yokozaki H, Yasui W. Expression of receptors for advanced glycation end-products (rage) is closely associated with the invasive and metastatic activity of gastric cancer. J Pathol 2002:196(2): 163-170.
35. Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ et al. Rage (receptor for advanced glycation endproducts), rage ligands, and their role in cancer and inflammation. J Transl Med 2009:7(17.
36. Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of s100 proteins to rage: An update. Biochim Biophys Acta 2009:1793(6): 993-1007.
37. Nakamura K, Yamagishi S, Nakamura Y, Takenaka K, Matsui T, Jinnouchi Y, Imaizumi T. Telmisartan inhibits expression of a receptor for advanced glycation end products (rage) in angiotensin-ii-exposed endothelial cells and decreases serum levels of soluble rage in patients with essential hypertension. Microvasc Res 2005:70(3): 137-141.
38. Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol 2014:2(411-429.
39. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J et al. Rage mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003:9(7): 907-913.
40. Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D et al. The receptor for advanced glycation end products (rage) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 1995:270(43): 25752-25761.
41. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. Hmgb1 and rage in inflammation and cancer. Annu Rev Immunol 2010:28(367-388.
42. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and rage: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005:15(7): 16r-28r.
43. Xu D, Young JH, Krahn JM, Song D, Corbett KD, Chazin WJ, Pedersen LC, Esko JD. Stable rage-heparan sulfate complexes are essential for signal transduction. ACS Chem Biol 2013:8(7): 1611-1620.
44. Rouhiainen A, Kuja-Panula J, Tumova S, Rauvala H. Rage-mediated cell signaling. Methods Mol Biol 2013:963(239-263.
45. Kierdorf K, Fritz G. Rage regulation and signaling in inflammation and beyond. J Leukoc Biol 2013:94(1): 55-68.
46. Saleh A, Smith DR, Tessler L, Mateo AR, Martens C, Schartner E, Van der Ploeg R, Toth C, Zochodne DW, Fernyhough P. Receptor for advanced glycation end-products (rage) activates divergent signaling pathways to augment neurite outgrowth of adult sensory neurons. Exp Neurol 2013:249(149-159.
47. Donato R. Rage: A single receptor for several ligands and different cellular responses: The case of certain s100 proteins. Current molecular medicine 2007:7(8): 711-724.
48. Perrone L, Peluso G, Melone MA. Rage recycles at the plasma membrane in s100b secretory vesicles and promotes schwann cells morphological changes. J Cell Physiol 2008:217(1): 60-71.
49. Yamamoto Y, Yamamoto H. Interaction of receptor for advanced glycation end products with advanced oxidation protein products induces podocyte injury. Kidney Int 2012:82(7): 733-735.
50. Park SJ, Kleffmann T, Hessian PA. The g82s polymorphism promotes glycosylation of the receptor for advanced glycation end products (rage) at asparagine 81: Comparison of wild-type rage with the g82s polymorphic variant. J Biol Chem 2011:286(24): 21384-21392.
51. Matsumoto S, Yoshida T, Murata H, Harada S, Fujita N, Nakamura S, Yamamoto Y, Watanabe T, Yonekura H, Yamamoto H et al. Solution structure of the variable-type domain of the receptor for advanced glycation end products: New insight into age-rage interaction. Biochemistry 2008:47(47): 12299-12311.
52. Koch M, Chitayat S, Dattilo BM, Schiefner A, Diez J, Chazin WJ, Fritz G. Structural basis for ligand recognition and activation of rage. Structure 2010:18(10): 1342-1352.
53. Penumutchu SR, Chou RH, Yu C. Structural insights into calcium-bound s100p and the v domain of the rage complex. PLoS One 2014:9(8): e103947.
54. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and s100 proteins through receptor for advanced glycation end products (rage) activation. J Biol Chem 2000:275(51): 40096-40105.
55. Herwig N, Belter B, Wolf S, Haase-Kohn C, Pietzsch J. Interaction of extracellular s100a4 with rage prompts prometastatic activation of a375 melanoma cells. 2016:20(5): 825-835.
56. Mohan SK, Gupta AA, Yu C. Interaction of the s100a6 mutant (c3s) with the v domain of the receptor for advanced glycation end products (rage). Biochem Biophys Res Commun 2013:434(2): 328-333.
57. Boyd JH, Kan B, Roberts H, Wang Y, Walley KR. S100a8 and s100a9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res 2008:102(10): 1239-1246.
58. Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C, Los M. S100a8/a9 at low concentration promotes tumor cell growth via rage ligation and map kinase-dependent pathway. J Leukoc Biol 2008:83(6): 1484-1492.
59. Srikrishna G, Nayak J, Weigle B, Temme A, Foell D, Hazelwood L, Olsson A, Volkmann N, Hanein D, Freeze HH. Carboxylated n-glycans on rage promote s100a12 binding and signaling. J Cell Biochem 2010:110(3): 645-659.
60. Xie J, Burz DS, He W, Bronstein IB, Lednev I, Shekhtman A. Hexameric calgranulin c (s100a12) binds to the receptor for advanced glycated end products (rage) using symmetric hydrophobic target-binding patches. J Biol Chem 2007:282(6): 4218-4231.
61. Rani SG, Sepuru KM, Yu C. Interaction of s100a13 with c2 domain of receptor for advanced glycation end products (rage). Biochim Biophys Acta 2014:1844(9): 1718-1728.
62. Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A. S100b and s100a6 differentially modulate cell survival by interacting with distinct rage (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 2007:282(43): 31317-31331.
63. Businaro R, Leone S, Fabrizi C, Sorci G, Donato R, Lauro GM, Fumagalli L. S100b protects lan-5 neuroblastoma cells against abeta amyloid-induced neurotoxicity via rage engagement at low doses but increases abeta amyloid neurotoxicity at high doses. J Neurosci Res 2006:83(5): 897-906.
64. Komatsu H, Kojima M, Tsutsumi N, Hamano S, Kusama H, Ujiie A, Ikeda S, Nakazawa M. Study of the mechanism of inhibitory action of tranilast on chemical mediator release. Jpn J Pharmacol 1988:46(1): 43-51.
65. Shioda H. A double blind controlled trial of n-(3',4'-dimethoxycinnamoyl) anthranilic acid on children with bronchial asthma. N-5' study group in children. Allergy 1979:34(4): 213-219.
66. Okuda M, Ishikawa T, Saito Y, Shimizu T, Baba S. A clinical evaluation of n-5' with perennial-type allergic rhinitis--a test by the multi-clinic, intergroup, double-blind comparative method. Ann Allergy 1984:53(2): 178-185.
67. Kondo N, Fukutomi O, Kameyama T, Orii T. Inhibition of proliferative responses of lymphocytes to food antigens by an anti-allergic drug, n(3',4'-dimethoxycinnamoyl) anthranilic acid (tranilast) in children with atopic dermatitis. Clin Exp Allergy 1992:22(4): 447-453.
68. Yamamoto M, Yamauchi T, Okano K, Takahashi M, Watabe S, Yamamoto Y. Tranilast, an anti-allergic drug, down-regulates the growth of cultured neurofibroma cells derived from neurofibromatosis type 1. Tohoku J Exp Med 2009:217(3): 193-201.
69. Cho CC, Hung KW, Gorja DR, Yu C. The solution structure of human calcium-bound s100a4 mutated at four cysteine loci. J Biomol NMR 2015:62(2): 233-238.
70. Williamson MP. Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 2013:73(1-16.
71. Dominguez C, Boelens R, Bonvin AM. Haddock: A protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 2003:125(7): 1731-1737.
72. Lakowicz JR. Principles of fluorescence spectroscopy. Springer Science & Business Media.