簡易檢索 / 詳目顯示

研究生: 廖宜仁
論文名稱: CMOS-MEMS雙電極式超聲波換能器之設計與特性探討
Design and Characterization of CMOS-MEMS Dual-Electrode Capacitive Micromachined Ultrasonic Transducers
指導教授: 李昇憲
口試委員: 謝哲偉
邱一
李夢麟
白明憲
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 70
中文關鍵詞: CMOS-MEMS超聲波電容式超聲波換能器雙電極
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用TSMC 0.35m 2P4M CMOS-MEMS標準製程開發電容式超聲波換能器(Capacitive Micromachined Ultrasonic Transducers, CMUTs),電容式超聲波的特性為擁有較佳的接收靈敏度且易與CMOS-MEMS電路作整合。本研究主要結合雙電極、凹槽以及陣列式設計,雙電極設計可以利用偏壓的調整使得結構的電容間隙縮小以提升訊號;凹槽設計除了能降低薄膜剛性,使所需要的偏壓降低外,也可增加平均薄膜的位移,因此提升訊號強度;最後陣列式設計則是為了提升發送超聲波時的壓力以及接收超聲波時的訊號。
    量測的結果顯示,在利用72個薄膜陣列所組成的雙電極電容式超聲波元件,其接收端在放大20dB後擁有460mV的電壓峰對峰值,其中心頻落在2MHz,比例頻寬為120%。在發送方面,元件未吸附前可產生約43.9kPa的超聲波壓力,中心頻在4.07MHz,比例頻寬為261%;當元件薄膜吸附在底電極後也擁有約4kPa的超聲波發送壓力,中心頻在8.07MHz,比例頻寬為85.8%。由於製程因素未將雙電極的特性表現出來,未來將改善製程及元件設計,相信可達到單一晶片上自發自收且整合電路之效能,以應用於生醫的檢測及造影成像。


    致謝 中文摘要 Abstract 目錄 圖目錄 表目錄 第一章 前言 1-1研究動機 1-2文獻回顧 1-3文章架構 第二章 元件之理論分析 2-1機械系統 2-2等效電路系統 2-3薄膜共振器 2-4聲學分析 第三章 元件之設計與模擬 3-1雙電極(Dual-electrode)設計 3-2陣列設計 3-3高密度空間使用設計 3-4參數設計及模擬 第四章 後製程與結果 4-1 CMOS-MEMS後製程 4-2後製程結果 第五章 量測結果 5-1機械特性量測 5-1-1薄膜共振器量測架設 5-1-2側電極偏壓加驅動(DC+AC)、底電極收訊號 5-1-3側電極驅動、底電極偏壓、中心電極收訊號 5-1-4空氣環境下之感測訊號 5-1-5水下之光學感測訊號 5-2超聲波特性量測 5-2-1水下之超聲波接收測試 5-2-2水下之超聲波發送測試 5-2-3單電極之聲學量測 第六章 結論及未來展望 6-1結論 6-2未來研究 第七章 參考文獻

    [1] C.-M. Lin, ”Implementation of a human follicles assessment by ultrasound techniques,” Master thesis, Institute of Biomedical Engineering, National Cheng Kung University, Jun. 2008.

    [2] K. T. Dussik, “Uber die moglichkeit hochfrequente mechanische schwingungen als diagnostisches hilfsmittel zu verwerten”, Z Neurol Psychiat, vol. 174, no. 1, pp. 153-168, Dec. 1942.

    [3] I. Donald, J. Macvicar, and T. G. Brown, “Investigation of abdominal masses by pulsed ultrasound,” The Lancet, vol. 271, no. 7032, pp. 1188-1195, June 1958.

    [4] D. G. McDonald and G. R. Leopold, “Ultrasound B-scanning in the differentiation of Baker’s cyst and thrombophlebitis,” Br J Radiol, vol. 45, no. 538, pp. 729-732, Oct. 1972.

    [5] A.-S. Ergun, G.-G. Yaralioglu, and B.-T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: theory and technology,” Journal of Aerospace Engineering, vol. 16, no. 2, pp. 76-84, April 2003.

    [6] R. O. Guldiken, “Dual-electrode capacitive micromachined ultrasonic transducer for medical ultrasound applications,” Ph.D. thesis, Georgia Institute of Technology, Dec. 2008.

    [7] S. Olcum, F. Yalcin Yamaner, A. Bozkurt, and A. Atalar, “Deep-collapse operation of capacitive micromachined ultrasonic transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 11, pp. 2475-2483, Nov. 2011.

    [8] K.-K. Park, Ö. Oralkan, and B.-T. Khuri-Yakub, “A Comparison Between Conventional and Collapse-Mode Capacitive Micromachined Ultrasonic Transducers in 10-MHz 1-D Arrays,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 6, pp. 1245-1255, Jun. 2013.

    [9] P. K. Tang, P. H. Wang, M. L. Li and Michael S.-C. Lu, “Design and characterization of the immersion-type capacitive ultrasonic sensors fabricated in a CMOS process,” J. Micromechanics and Microengineering, vol. 21, no. 2, pp. 2475-2483 , Feb. 2011.

    [10] Y.-S. Tien, P.-C. Ku, F.-Y. Lin, P.-C. Li, L.-H. Lu, P.-L. Kuo, and W.-C. Tian, “A low voltage CMOS-based capacitive micromachined ultrasonic sensors development”, 2012 IEEE Sensors Conference, Taipei, Taiwan, pp. 1810-1813. Oct. 2012.

    [11] W.-C. Chen, M.-H. Li, Y.-C. Liu, W. Fang, and S.-S. Li,"A fully-differential CMOS-MEMS DETF oxide resonator with Q > 4,800 and positive TCF," IEEE Electron Device Letters, vol. 33, no. 5, pp. 721-723, May 2012.

    [12] M. Shin, J.-S. Krause, P. DeBitetto, and R.-D. White, “Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology,” Journal of the Acoustical Society of America, vol. 134, no. 2, pp.1011-1020, Aug. 2013.

    [13] P. Osterberg, H. Yie, X. Cai, J. White, and S. Senturia, “Self-consistent simulation and modeling of electrostatically deformed diagrams,” 1994 IEEE Micro Electro Mechanical Systems, pp. 28-32, Jan. 1994.

    [14] D. M. Schneider, J. Malibach, and E. Obermeir, “A new analytical solution for the load-deflection of square membranes,” Journal of Microelectromechanical System, vol. 4, no. 4, pp. 238-241, Dec. 1995.

    [15] M. Rahman, J. Hernandez, S. Chowdhury, “An improved analytical method to design CMUTs with square diaphragms,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 4, pp.834-845, Apr. 2013.

    [16] A. Lohfink and P.-C. Eccardt, “Linear and nonlinear equivalent circuit modeling of CMUTs,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 12, pp.2163-2172, Dec. 2005.

    [17] M. Greenspaan, “Piston radiator: Some extensions of the theory,” Journal of the Acoustical Society of America, vol. 65, no. 3, pp.608-621, Mar. 1979.

    [18] H. Köymen, A. Atalar, E. Aydoğdu, C. Kocabaş, H.-K. Oğuz, S. Olçum, A. Ozgurluk, A. Unlügedik, “An improved lumped element nonlinear circuit model for a circular CMUT cell,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 8, pp.1791-1799, Aug. 2012.

    [19] L.-L. Beranek, Acoustical Measurements, Acoustical Society of America, 1988.

    [20] C.-B. Doody, X.-Y. Cheng, C.-A. Rich, D.-F. Lemmerhirt, and R.-D. White, “Modeling and characterization of CMOS-fabricated capacitive micromachined ultrasound transducer,” Journal of Microelectromechanical Systems, vol. 20, no. 1, pp.104-118, Feb. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE