簡易檢索 / 詳目顯示

研究生: 桑傑
Kiran Sonaje
論文名稱: Novel pH-Sensitive Chitosan Nanoparticles for Oral Insulin Delivery: Mechanism, Biodistribution, Toxicological, Pharmacodynamic and Pharmacokinetic Evaluations
新穎具pH敏感性幾丁聚醣奈米微粒口服胰島素載體之機制,生物分佈,毒理學,藥物動力學及效學探討
指導教授: 宋信文
Sung, Hsing-Wen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 97
中文關鍵詞: 幾丁聚醣奈米微粒胰島素口服釋放機制生物分布安全性
外文關鍵詞: Chitosan nanoparticles, Insulin, Oral Delivery, Mechanism, Biodistribution and Pharmacokinetics, Safety
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The present dissertation was aimed at evaluating the mechanism, safety and efficacy of novel pH-sensitive nanoparticles (NPs) for the oral delivery of insulin. The self-assembled NPs with pH-responsive characteristics were prepared by mixing the anionic poly-r-glutamic acid solution with the cationic chitosan (CS) solution in the presence of MgSO4 and sodium tripolyphosphate. The absorption enhancing potential of the test NPs was evaluated using an in vitro Caco-2 cell monolayer model. The in vitro results indicated that the transport of insulin across the cell monolayers was improved by NPs in a pH-dependent manner; with an increase in pH, the amount of insulin transported decreased significantly. The impact of orally administered NPs on the pharmacodynamics (PD) and pharmacokinetics (PK) of insulin was evaluated in a diabetic rat model. Oral administration of insulin-loaded NPs demonstrated a significant hypoglycemic action for at least 10 h in diabetic rats and the corresponding relative bioavailability of insulin was found to be 15.1□ 0.9%.
    The test NPs were then used to deliver the aspart-insulin, a monomeric insulin analogue. The biodistribution of orally administered aspart-insulin via NPs was studied in rats using the single-photon emission computed tomography (SPECT)/computed tomography (CT). The results indicated that the insulin was absorbed into the systemic circulation, while the drug carrier (CS) was mainly retained in the gastrointestinal tract. The biodistribution of orally administered aspart-insulin was then compared that administered via subcutaneous (SC) injection. In the PD/PK evaluation in a diabetic rat model, the orally administered aspart-insulin-loaded NPs produced a slower hypoglycemic response for a prolonged period of time, whereas the SC injection of aspart-insulin produced a more pronounced hypoglycemic effect for a relatively shorter duration. Finally, comparison of the PD/PK profiles of the orally administered aspart-insulin with those of the SC injection of NPH-insulin (an intermediate-acting insulin preparation) suggested the suitability of our NP system as a noninvasive alternative for the basal insulin therapy.
    It has been suggested that the paracellular permeation enhancement by CS may result in the absorption of unwanted toxins present in the GI tract. Therefore, the effects of test NPs on the oral absorption of lipopolysaccharide (LPS, a model toxin) were evaluated in animal models. The results indicated that the intestinal mucus layer acts as a barrier for the absorption of orally administered LPS. However, the test NPs could infiltrate the mucus layer due to their positive surfaces and were able to enhance the absorption of loaded insulin alone without affecting the absorption of LPS. Additionally, the toxicity study confirmed that test NPs did not improve the oral absorption of LPS.
    Finally, the ultrastructural effects of CS on the epithelial tight junctions and paracellular permeability were investigated using transmission electron microscopy (TEM). The results indicated that the interaction of CS with intestinal cells induced a relatively rapid increase in paracellular permeability both in vitro and in vivo. The mechanism of action of CS with regard to its ability to disrupt epithelial cell TJs was found to be due to the translocation of the TJs proteins ZO-1, occludin and JAM-1 from the plasma membrane into the cytosol. The TEM results revealed no detectable alterations in the morphology of the TJs or lateral intercellular spaces, indicating that the TJ opening activity of CS was transient and reversible. These results indicated that the prepared NPs can serve as a safe and effective alternative for the oral delivery of insulin


    Abstract..…………………………………………………………….…….i Table of contents iii List of Figures vii List of Tables x Chapter 1. Introduction ………………………………………...1 Chapter 2. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery 5 2.1. Materials and Methods 5 2.1.1. Preparation and characterization of test NPs 5 2.1.2. Fluorescent NP preparation and confocal laser scanning microscopy (CLSM) visualization 7 2.1.3. Insulin transport study 7 2.1.4. Animal studies 8 2.1.5. In vivo mucoadhesion and intestinal permeation of NPs 8 2.1.6. In vivo toxicity study 9 2.1.7. Pharmacological activity of the insulin loaded in NPs 9 2.1.8. Oral efficacy and bioavailability of NPs 10 2.1.9. Statistical analysis 11 2.2. Results 11 2.2.1. Characterization of insulin-loaded NPs 11 2.2.2. CLSM visualization of Caco2 monolayers 12 2.2.3. Insulin transport study 15 2.2.4. In vivo mucoadhesion and intestinal permeation of NPs 15 2.2.5. In vivo toxicity 16 2.2.6. Pharmacological activity of the insulin loaded in NPs 19 2.2.7. Oral efficacy and bioavailability 20 2.3. Discussion 22 2.4. Conclusions 26 Chapter 3. Biodistribution, Pharmacodynamics and Pharmacokinetics of Insulin Analogues in a Rat Model: Oral Delivery Using pH-Responsive Nanoparticles vs. Subcutaneous Injection 27 3.1. Materials and Methods 29 3.1.1. Preparation of the insulin-loaded NPs 29 3.1.2. Characterization of test NPs 30 3.1.3. In vitro Caco-2 cell monolayer experiments 30 3.1.4. Animal studies 32 3.1.5. Biodistribution study 32 3.1.6. PD/PK study 34 3.1.7. Statistical analysis 34 3.2. Results and Discussion 35 3.2.1. Characterization of the aspart-insulin loaded NPs 36 3.2.2. TEER measurement, drug transport and CLSM visualization in Caco-2 cell monolayers 38 3.2.3. Biodistribution study 41 3.2.4. PD/PK study 45 3.3. Conclusions 47 Chapter 4. Effects of Chitosan Nanoparticles on the Oral Absorption of Unwanted Toxins Present in the Intestinal Lumen: An In vivo Evaluation Using Bacterial Lipopolysaccharide as a Model Toxin 48 4.1. Materials and Methods 50 4.1.1. Preparation and characterization of test NPs 50 4.1.2. Evaluation of the micelle forming characteristics of LPS 50 4.1.3. Animal studies 51 4.1.4. Biodistribution study 51 4.1.5. Ultrastructural examination of the in vivo tight junction opening activity of CS-NPs 52 4.1.6. GI absorption of FITC-LPS and Cy3-insulin-loaded-NPs 53 4.1.7. In vivo toxicity study 54 4.1.8. Statistical analysis 55 4.2. Results and discussions 55 4.2.1. Characterization of the insulin-loaded NPs 56 4.2.2. Oral absorption and biodistribution of LPS 56 4.2.3. Effects of CS-NPs on the absorption and biodistribution of LPS and insulin 58 4.2.4. Micelle forming characteristics of LPS 60 4.2.5. Ultrastructural examination of TJ opening activity of CS in vivo 62 4.2.6. In vivo CLSM study 64 4.2.7. In vivo toxicity study 67 4.3. Conclusions 69 Chapter 5. Effects of chitosan on the epithelial TJs and paracellular permeability: An ultra-structural examination….…………70 5.1. Materials and Methods 72 5.1.1. Synthesis of Fluorescein isothiocyanate-labeled CS 72 5.1.2. Synthesis of Quantum Dots-labeled CS 72 5.1.3. Synthesis of Cy3-labeled Insulin 72 5.1.4. TEER measurements and in vitro CLSM visualization 73 5.1.5. Ultrastructural examination of TJ opening activity of CS in vitro 74 5.1.6. Animal studies 75 5.1.7. GI absorption of fluorescent-NPs studied using CLSM 75 5.1.8. Ultrastructural examination of TJ opening activity of CS in vivo 76 5.2. Results and discussions 76 5.2.1. TEER measurements 77 5.2.2. CLSM visualization of Caco-2 cell monolayers 78 5.2.3. Ultrastructural examination of TJ opening activity of CS in vitro 80 5.2.4. In vivo absorption of fluorescent NPs 81 5.2.5. Ultrastructural examination of TJ opening activity of QD-CS in vivo 82 5.4. Conclusions 85 References…. 86 List of Publications 95 Biography…… 97

    1. Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: A comparative review. Adv Drug Del Rev 2007;59(15):1521-1546.
    2. Still JG. Development of oral insulin: progress and current status. Diabetes Metab Res Rev 2002;18(S1):S29-S37.
    3. Arbit E, Kidron M. Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol 2009;3(3):562-567.
    4. Fix JA. Strategies for delivery of peptides utilizing absorption- enhancing agents. J Pharm Sci 1996;85(12):1282-1285.
    5. Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabet Med 2003;20(11):886-898.
    6. Salama NN, Eddington ND, Fasano A. Tight junction modulation and its relationship to drug delivery. Adv Drug Del Rev 2006;58(1):15-28.
    7. Laukoetter MG, Bruewer M, Nusrat A. Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol 2006;22(2):85-89.
    8. Junginger HE, Verhoef JC. Macromolecules as safe penetration enhancers for hydrophilic drugs-a fiction? Pharm Sci Tech Today 1998;1(9):370-376.
    9. Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 2007;8(1):146-152.
    10. Lin YH, Chen CT, Liang HF, Kulkarni AR, Lee PW, Chen CH, et al. Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnology 2007;18(10):105102.
    11. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29(8):1035-1041.
    12. Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm 1999;182(1):21-32.
    13. Koide SS. Chitin-chitosan: properties, benefits and risks. Nutri Res 1998;18:1091-1101.
    14. Tanaka Y, Tanioka S, Tanaka M, Tanigawa T, Kitamura Y, Minami S, et al. Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral administration. Biomaterials 1997;18(8):591-595.
    15. Ren D, Yi H, Wang W, Ma X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydrate Res 2005;340(15):2403-2410.
    16. Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Del Rev 2001;52(2):117-126.
    17. Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 2009;30(29):5691-5700.
    18. Akagi T, Higashi M, Kaneko T, Kida T, Akashi M. In vitro Enzymatic Degradation of nanoparticles prepared from hydrophobically-modified poly(γ-glutamic acid). Macromol Biosci 2005;5(7):598-602.
    19. Akagi T, Higashi M, Kaneko T, Kida T, Akashi M. Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(γ- glutamic acid)-graft-l-phenylalanine copolymers. Biomacromolecules 2006;7(1):297-303.
    20. Fwu-Long Mi, Shin-Shing Shyu, Sung-Tao Lee, Tsung-Bi Wong. Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. J Polym Sci Part B: Polymer Physics 1999;37(14):1551-1564.
    21. Clore J, Thurby-Hay L. Basal insulin therapy. Curr Diabet Reports 2004;4(5):342-345.
    22. Carino GP, Mathiowitz E. Oral insulin delivery. Adv Drug Del Rev 1999;35(2-3):249-257.
    23. Zambanini A, Newson RB, Maisey M, Feher MD. Injection related anxiety in insulin-treated diabetes. Diabet Res Clin Pract 1999; 46(3):239-246.
    24. Binder C, Lauritzen T, Faber O, Pramming S. Insulin pharmacokinetics. Diabetes Care 1984;7(2):188-199.
    25. Hidalgo I, Raub T, Borchardt R. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989;96(3):736-749.
    26. Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW. Preparation of nanoparticles composed of chitosan/poly-r-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 2005;6(2):1104-1112.
    27. Shargel L, Yu ABC. Applied Biopharmaceutics and Pharmacokinetics. 4th ed. New York: McGraw-Hill, 1999.
    28. Rosa GD, Iommelli R, La Rotonda MI, Miro A, Quaglia F. Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres. J Control Release 2000;69(2):283-295.
    29. Ho Y-P, Chen HH, Leong KW, Wang T-H. Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J Control Release 2006;116(1):83-89.
    30. Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther 2006 June 1, 2006;317(3):1372-1381.
    31. Mujumdar SR, Mujumdar RB, Grant CM, Waggoner AS. Cyanine-labeling reagents: sulfobenzindocyanine succinimidyl esters. Bioconj Chem 1996;7(3):356-362.
    32. Ranaldi G, Marigliano I, Vespignani I, Perozzi G, Sambuy Y. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line. J Nutr Biochem 2002; 13(3):157-167.
    33. Ma Z, Lim L-Y. Uptake of chitosan and associated insulin in caco-2 cell monolayers: A comparison between chitosan molecules and chitosan nanoparticles. Pharm Res 2003;20(11):1812-1819.
    34. Yun Z, Takagi M, Yoshida T. Repeated addition of insulin for dynamic control of apoptosis in serum-free culture of Chinese hamster ovary cells. J Biosci Bioeng 2003;96(1):59-64.
    35. Kafedjiiski K, Hoffer M, Werle M, Bernkop-Schnurch A. Improved synthesis and in vitro characterization of chitosan-thioethylamidine conjugate. Biomaterials 2006;27(1):127-135.
    36. Chung H, Kim J, Um JY, Kwon IC, Jeong SY. Self-assembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia 2002;45(3):448-451.
    37. Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 2007;117(2):163-170.
    38. Teply BA, Tong R, Jeong SY, Luther G, Sherifi I, Yim CH, et al. The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules. Biomaterials 2008;29(9):1216-1223.
    39. Legen I, Kristl A. Factors affecting the microclimate pH of the rat jejunum in ringer bicarbonate buffer. Bio Pharm Bul 2003;26(6):886-889.
    40. Old J, Connelly L, Francis J, Branch K, Fry G, Deane E. Haematology and serum biochemistry of three Australian desert murids: the Plains rat (Pseudomys australis), the Spinifex hopping-mouse (Notomys alexis) and the Central rock-rat (Zyzomys pedunculatus). Comp Clin Path 2005;14(3):130-137.
    41. Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel G. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 2007;28(13):2233-2243.
    42. Anthony Adson, Burton PS, Raub TJ, Barsuhn CL, Audus KL, Ho NFH. Passive diffusion of weak organic electrolytes across Caco-2 cell monolayers: Uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers. J Pharm Sci 1995;84(10):1197-1204.
    43. Shu XZ, Zhu KJ. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int J Pharm 2002;233(1-2):217-225.
    44. Smith JM, Dornish M, Wood EJ. Involvement of protein kinase C in chitosan glutamate-mediated tight junction disruption. Biomaterials 2005;26(16):3269-3276.
    45. Kotze AF, Lueen HL, de Leeuw BJ, de Boer BG, Coos Verhoef J, Junginger HE. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release 1998;51(1):35-46.
    46. Zhang H, Neau SH. In vitro degradation of chitosan by bacterial enzymes from rat cecal and colonic contents. Biomaterials 2002;23(13):2761-2766.
    47. Rubin BR, Talent JM, Kongtawelert P, Pertusi RM, Forman MD, Gracy RW. Oral polymeric N-acetyl-D-glucosamine and osteoarthritis. J Am Osteopath Assoc 2001;101(6):339-344.
    48. Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation. J Control Release 2006;114(2):242-250.
    49. Suzuki A, Morishita M, Kajita M, Takayama K, Isowa K, Chiba Y, et al. Enhanced colonic and rectal absorption of insulin using a multiple emulsion containing eicosapentaenoic acid and docosahexaenoic acid. J Pharm Sci 1998;87(10):1196-1202.
    50. Arbit E. The physiological rationale for oral insulin administration. Diabet Tech Therapeut 2004;6(4):510-517.
    51. Lin Y-H, Sonaje K, Lin KM, Juang J-H, Mi F-L, Yang H-W, et al. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J Control Release 2008;132(2):141-149.
    52. Sonaje K, Lin Y-H, Juang J-H, Wey S-P, Chen C-T, Sung H-W. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials 2009;30(12):2329-2339.
    53. Jeffrey PD, Coates JH. An equilibrium ultracentrifuge study of the self-association of bovine insulin. Biochemistry 1966;5(2):489-498.
    54. Christiane D, Marie S, Nathalie U, Philippe M. Poly(e-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes. J Pharm Sci 2010;99(2):879-889.
    55. Pan Y, Li Y-j, Zhao H-y, Zheng J-m, Xu H, Wei G, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002;249(1-2):139-147.
    56. He X, Sugawara M, Takekuma Y, Miyazaki K. Absorption of ester prodrugs in Caco-2 and rat intestine models. Antimicrob Agents Chemother 2004 July 1, 2004;48(7):2604-2609.
    57. Chen M-C, Wong H-S, Lin K-J, Chen H-L, Wey S-P, Sonaje K, et al. The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Biomaterials 2009;30(34):6629-6637.
    58. Sodoyez JC, Sodoyez-Goffaux F, Guillaume M, Merchie G. [123I]Insulin metabolism in normal rats and humans: external detection by a scintillation camera. Science 1983;219(4586):865-867.
    59. Lin K-J, Liao C-H, Hsiao I-T, Yen T-C, Chen T-C, Jan Y-Y, et al. Improved hepatocyte function of future liver remnant of cirrhotic rats after portal vein ligation: A bonus other than volume shifting. Surgery 2009;145(2):202-211.
    60. Brange J, Owens DR, Kang S, Volund A. Monomeric insulins and their experimental and clinical implications. Diabet Care 1990; 13(9) :923-954.
    61. Hirsch IB. Insulin Analogues. N Engl J Med 2005;352(2):174-183.
    62. Sonaje K, Chen Y-J, Chen H-L, Wey S-P, Juang J-H, Nguyen H-N, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(γ-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials 2010;31(12):3384-3394.
    63. Thouzeau C, Peters G, Le Bohec C, Le Maho Y. Adjustments of gastric pH, motility and temperature during long-term preservation of stomach contents in free-ranging incubating king penguins. J Exp Biol 2004;207(15):2715-2724.
    64. Eaimtrakarn S, Itoh Y, Kishimoto J-i, Yoshikawa Y, Shibata N, Takada K. Retention and transit of intestinal mucoadhesive films in rat small intestine. Int J Pharm 2001;224(1-2):61-67.
    65. Marttin E, Verhoef JC, Spies F, van der Meulen J, Nagelkerke JF, Koerten HK, et al. The effect of methylated β-cyclodextrins on the tight junctions of the rat nasal respiratory epithelium: Electron microscopic and confocal laser scanning microscopic visualization studies. J Control Release 1999;57(2):205-213.
    66. Tian Q, Zhang C-N, Wang X-H, Wang W, Huang W, Cha R-T, et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials 2010;31(17):4748-4756.
    67. Kathelijne P, Bart C, Bieke Van Den B, Kurt A, Christophe Van de W. A review of small animal imaging planar and pinhole SPECT γ camera imaging. Vet Radiol Ultrasound 2005;46(2):162-170.
    68. Sodoyez JC, Sodoyez Goffaux F, von Frenckell R, De Vos CJ, Treves S, Kahn CR. Differing effects of antiinsulin serum and antiinsulin receptor serum on 123I-insulin metabolism in rats. J Clin Invest 1985;75(5):1455-1462.
    69. Malafaya PB, Santos TC, van Griensven M, Reis RL. Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. Biomaterials 2008;29(29):3914-3926.
    70. Triantafilou K, Triantafilou M, Fernandez N. Lipopolysaccharide (LPS) labeled with Alexa 488 hydrazide as a novel probe for LPS binding studies. Cytometry 2000;41(4):316-320.
    71. Illyes G, Kovacs K, Kocsis B, Baintner K. Failure of oral E. coli O83 lipopolysaccharide to influence intestinal morphology and cell proliferation in rats: Short communication. Act Vet Hung 2008;56(1):1-3.
    72. Kim B, Peppas NA. In vitro release behavior and stability of insulin in complexation hydrogels as oral drug delivery carriers. Int J Pharm 2003;266(1-2):29-37.
    73. Sonaje K, Lin K-J, Wang J-J, Mi F-L, Chen C-T, Juang J-H, et al. Self-assembled pH-sensitive nanoparticles: A platform for oral delivery of protein drugs. Adv Funct Mat 2010;20(21):3695-3700.
    74. Shu XZ, Zhu KJ, Song W. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int J Pharm 2001;212(1):19-28.
    75. Yu L, Tan M, Ho B, Ding JL, Wohland T. Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: Aggregation of a lipopolysaccharide. Anal Chim Acta 2006;556(1):216-225.
    76. Rosenbaum JT, Hendricks PA, Shively JE, McDougall IR. Distribution of radiolabeled endotoxin with particular reference to the eye: concise communication. J Nucl Med 1983;24(1):29-33.
    77. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters 2007;7(10):3065-3070.
    78. Li G, Liu Y, Tzeng N, Cui G, Block ML, Wilson B, et al. Protective effect of dextromethorphan against endotoxic shock in mice. Biochem Pharmacol 2005;69(2):233-240.
    79. Ravin HA, Rowley D, Jenkins C, Fine J. On the absorption of bacterial endotoxin from the gastro-intestinal tract of the normal and shocked animal. J Exp Med 1960;112:783-792.
    80. Piazza M, Colombo M, Zanoni I, Granucci F, Tortora P, Weiss J, et al. Uniform lipopolysaccharide (LPS)-loaded magnetic nanoparticles for the investigation of LPS–TLR4 signaling. Angew Chem Int Ed 2011;50(3): 622-626.
    81. Flynn AN, Itani OA, Moninger TO, Welsh MJ. Acute regulation of tight junction ion selectivity in human airway epithelia. Proc Natl Acad Sci 2009;106(9):3591-3596.
    82. Cone RA. Barrier properties of mucus. Adv Drug Del Rev 2009;61(2):75-85.
    83. Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 2001;280(5):G922-G929.
    84. Allen A, Flemstrom G, Garner A, Kivilaakso E. Gastroduodenal mucosal protection. Physiol Rev 1993;73(4):823-857.
    85. Flemstrom G, Kivilaakso E. Demonstration of a pH gradient at the luminal surface of rat duodenum in vivo and its dependence on mucosal alkaline secretion. Gastroenterol 1983;84(4):787-794.
    86. Lai SK, O'Hanlon DE, Harrold S, Man ST, Wang Y-Y, Cone R, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci 2007;104(5):1482-1487.
    87. Vreugdenhil ACE, Snoek AMP, Greve JWM, Buurman WA. Lipopolysaccharide-binding protein is vectorially secreted and transported by cultured intestinal epithelial cells and is present in the intestinal mucus of mice. J Immunol 2000;165(8):4561-4566.
    88. Bertok L. Effect of bile acids on endotoxin in vitro and in vivo (physico-chemical defense): Bile deficiency and endotoxin translocation. Ann N Y Acad Sci 1998;851(1):408-410.
    89. Berczi I, Bertok L, Baintner K, Veress B. Failure of oral escherichia coli endotoxin to induce either specific tolerance or toxic symptoms in rats. J Pathol Bacteriol 1968;96(2):481-486.
    90. Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov 2003;2(4):289-295.
    91. Ward PD, Tippin TK, Thakker DR. Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Tech Today 2000;3(10):346-358.
    92. Mesiha M, Plakogiannis F, Vejosoth S. Enhanced oral absorption of insulin from desolvated fatty acid-sodium glycocholate emulsions. Int J Pharm 1994;111(3):213-216.
    93. Uchiyama T, Sugiyama T, Quan Y-S, Kotani A, Okada N, Fujita T, et al. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: their intestinal mucosal toxicity and absorption-enhancing mechanism of n-Lauryl-β-D-malto pyranoside. J Pharm Pharmacol 1999;51(11):1241-1250.
    94. Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res 1994;11(8):1186-1189.
    95. Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res 1994;11(9):1358-1361.
    96. van der Merwe SM, Verhoef JC, Verheijden JHM, Kotze AF, Junginger HE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm 2004;58(2):225-235.
    97. Sonaje K, Lin KJ, Wey SP, Lin CK, Yeh TH, Nguyen HN, et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-Responsive nanoparticles vs. subcutaneous injection. Biomaterials 2010;31(26): 6849-6858.
    98. Mortensen LJ, OberdoIˆrster G, Pentland AP, DeLouise LA. In vivo Skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett 2008;8(9):2779-2787.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE