簡易檢索 / 詳目顯示

研究生: 劉雅婷
Liu, Ya-Ting
論文名稱: 原位原子層沉積成長氧化鋁/砷化鎵金氧半電容之介面電性與氧化層微縮特性研究
Interfacial Electrical Properties and Oxide Scaling Characteristics of In-situ ALD-Al2O3 on GaAs MOS Capacitor
指導教授: 郭瑞年
Kwo, Raynien
口試委員: 洪銘輝
Hong, Mingwei
皮敦文
Pi, Tunwen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 67
中文關鍵詞: 原子層沉積氧化鋁高介電係數砷化鎵
外文關鍵詞: Atomic layer deposited, Al2O3, high-k, GaAs
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著互補式金氧半場效電晶體(MOSFETs)擔子元件尺寸的縮小,現有的矽半導體相關的電子元件已面臨本質材料與技術上的挑戰,因此現在具備高載子遷移率之半導體材料成為發展趨勢,利用高介電係數氧化物例如氧化鋁、氧化鉿,搭配高載子三五族半導體例如砷化鎵,都是非常有潛力或著是已經準備量產的互補式金氧半場效電晶體。
    了解氧化物和三五族半導體的界面特性,並且進一步去改善電性表現,是了解互補式金氧半場效電晶體最重要的議題。本實驗利用原子層沉積法(ALD)成長高介電係數氧化鋁及氧化鉿於乾淨的砷化鎵半導體上,利用X-ray光電子能譜(XPS)分析界面的化學鍵結特性,利用掃描穿隧試顯微鏡(STM)呈現原子級的表面情形,以上過程中皆在超高真空系統中進行,最後再製成MOSCPA分析電性結果。
    本實驗共分三部分,第一部分在探討砷化鎵重構的表面,分別為As-rich(2x4)以及Ga-rich(4x6),Ga-rich的重構表面在C-V曲線和Dit有比較好的電性結果,配合XPS界面化學分析得到AsOx和Ga-O-Al扮演很重要的因素影響電性。第二部分,試著成長不同厚度的氧化鋁(14、8、5和3nm)在砷化鎵(4x6)表面,我們都得到非常好的電性表現,不過5nm厚度氧化鋁經過550oC一小時退火後,XPS觀察到Ga3+和AsOx出現在氧化物和半討體界面,這會使漏電流大幅的增加。第三部分,成長氧化鉿在砷化鎵表面上,討論利用TMA當作催化劑是否有效改善界面得到較好的電性表現,結果在不破真空的情形下(in-situ),無論是否有多通一層TMA都可以得到較好電性特性。


    Understanding the interfacial electronic characteristics of oxide/III-V and improving its electrical properties is one of the most critical issues for realizing the advanced III-V MOS devices. In this work, the growth of atomic-layer-deposition (ALD) onto fresh molecular-beam-epitaxy (MBE) grown GaAs epi-layer, uses XPS to interface chemical analysis and fabricate MOS capacitors for electrical properties research.
    In the first part, Al2O3 on GaAs (001) are used with two different reconstruction surfaces: As-rich (2×4) and Ga-rich (4×6). Both the C-V curve and Dit values show better behavior on Ga-rich surfaces than with As-rich surface samples. Based on the results of electrical measurement and XPS analysis, the amounts of AsOx and Ga-O-Al/Ga1+ play an important role in affecting the electrical properties. In the second part, varying the thickness (14, 8, 5, and 3nm) of ALD-Al2O3 on GaAs(001)-(4×6) obtained good electrical characteristics. The leakage current increased after the annealing of 5nm thickness Al2O3. XPS found that Ga3+ and AsOx were diffused to the oxide surface after RTP annealing at 550oC. Therefore, the growth of hetro-structures of Al2O3/ GaAs with thinner oxide has a difficulty in GaAs devices. In part three, we researched properties of HfO2/GaAs interfaces with TMA exposure. The result showed that high-quality interfacial characteristics were attained by in-situ ALD-HfO2 passivation on GaAs surfaces, however the TMA exposure is not a strong difference for HfO2 in-situ growth on GaAs surfaces.

    Chapter 1 Introduction 1.1 Background 1.2 Motivation Chapter 2 Instrumentation and Theories 2.1 Atomic Layer Deposition (ALD) 2.2 Molecular Beam Epitaxy (MBE) 2.3 Reflection High Energy Electron Diffraction (RHEED) 2.4 X-ray Photoelectron Spectroscopy (XPS) 2.5 Metal-Oxide-semiconductor Capacitor (MOSCAP) 2.5.1 Capacitance-Voltage Characteristics of MOSCAP 2.5.2 Interfacial trapped charge Analysis Chapter 3 Experimental Procedures Chapter 4 Results and Discussions 4.1 Research of Al2O3 on Different GaAs Reconstructed Surfaces 4.1.1 C-V Characteristics Electrical Analysis 4.1.2 Dit Analysis 4.1.3 Discussion of Different Method to Calculate Dit 4.1.4 In-situ XPS Analysis 4.2 Research of Al2O3 on GaAs with Various Thicknesses 4.2.1 Electrical Characteristics Analysis 4.2.2 XPS Analysis 4.3 Research of HfO2 on GaAs with TMA Treatment 4.3.1 C-V Characteristics Electrical Analysis 4.3.2 XPS Analysis 4.3.3 STM Morphology Chapter 5 Conclusion References

    1. F. Wanlass and C. T. Sah, IEEE Technical digest of Int. Solid-state circuit Conf. 6, 32 (1963)
    2. International Technology Roadmap for Semiconductors (ITRS), 2011 Update. http://www.itrs.net/
    3. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt and Timp, Nature 399, 758 (1999).
    4. J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rev. Lett. 85, 1298 (2000).
    5. NSM Archive website - http://www.ioffe.rssi.ru/SVA/NSM/Semicond/
    6. M. W. Hong, J. R. Kwo, P. C. Tsai, Y. C. Chang, M. L. Huang, C. P. Chen, and T. D. Lin, Jpn. J. Appl. Phys., Part 1 46, 3167 (2007).
    7. G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, M. Meuris, and M. Heyns, Appl. Phys. Lett. 91, 133510 (2007).
    8. Y. C. Chang, C. Merckling, J. Penaud, C. Y. Lu, W. E. Wang, J. Dekoster, M. Meuris, M. Caymax, M. Heyns, J. Kwo, and M. Hong, Appl. Phys. Lett. 97, 112901 (2010).
    9. C. Marchiori, D. J. Webb, C. Rossel, M. Richter, M. Sousa, C. Gerl, R. Germann, C. Andersson, and J. Fompeyrine, J. Appl. Phys. 106, 114112 (2009).
    10. M. L. Huang, Y. H. Chang, T. D. Lin, H. Y. Lin, Y. T. Liu, T. W. Pi, M. Hong, and J. Kwo, Appl. Phys. Lett. 101, 212101 (2012).
    11. M. Hong, J. P. Mannaerts, J. E. Bowers, J. Kwo, M. Passlack, W.-Y. Hwang, and L. W. Tu, J. Cryst. Growth 175/176, 422 (1997).
    12. M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science 283, 1897 (1999).
    13. Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, J. S. Weiner, Y. K. Chen, and A. Y. Cho, Mat. Res. Soc. Symp. Proc. 573, 219 (1999).
    14. F. Ren, M. W. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kuo, Y. K. Chen, and A. Y. Cho, IEEE International Electron Devices Meeting (IEDM), Technical Digest 943 (1996).
    15. P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H.-J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. 83, 180 (2003).
    16. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, and P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005).
    17. K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, Appl. Phys. Lett. 92, 172904 (2008).
    18. C. A. Lin, H. C. Chiu, T. H. Chiang, T. D. Lin, Y. H. Chang, W. H. Chang, Y. C. Chang, W.-E. Wang, J. Dekoster, T. Y. Hoffmann, M. Hong, and J. Kwo, Appl. Phys. Lett. 98, 062108 (2011).
    19. W. H. Chang, T. H. Chiang, Y. D. Wu, M. Hong, C. A. Lin, and J. Kwo, J. Vac. Sci. Technol. B 29, 03C122 (2011)
    20. C. A. Lin, T. D. Lin, C. H. Chiang, M. Hong, and J. Kwo, the 15th International Molecular beam Epitaxy Conference, Vancouver, Canada, Aug 4-8, (2008); J. Cryst. Growth 311, 1954 (2009).
    21. G. Brammertz, H.-C. Lin, K. Martens, D. Mercier, S. Sioncke, A. Delabie, W. E. Wang, M. Caymax, M. Meuris, and M. Heyns, Appl. Phys. Lett. 93, 183504 (2008).
    22. C. L. Hinkle, A. M. Sonnet, M. Milojevic, F. S. Aguirre-Tostado, H. C. Kim, J. Kim, R. M. Wallace, and E. M. Vogel, Appl. Phys. Lett. 93, 113506 (2008)
    23. C.-W. Cheng, G. Apostolopoulos, and E. A. Fitzgerald, J. Appl. Phys. 109, 023714 (2011)
    24. N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi, and J. S. Harris, Appl. Phys. Lett. 89, 163517 (2006).
    25. Y. H. Chang, M. L. Huang, P. Chang, C. A. Lin, Y. J. Chu, B. R. Chen, C. L. Hsu, J. Kwo, T. W. Pi, and M. Hong, Microelectron. Eng. 88, 440 (2011).
    26. H. C. Lin, W.-E. Wang, G. Brammertz, M. Meuris, and M. Heyns, Microelec. Eng. 86, 1554 (2009).
    27. É. O’Connor, B. Brennan, V. Djara, K. Cherkaoui, S. Monaghan, S. B. Newcomb, R. Contreras, M. Milojevic, G. Hughes, M. E. Pemble, R. M. Wallace, and P. K. Hurley, J. Appl. Phys. 109, 024101 (2011).
    28. T. Gougousi, J. Electrochem. Soc. 157, H551- H556 (2010).
    29. P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H.-J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. 83, 180 (2003)
    30. G. D. Wilk, J. Appl. Phys. 89, 5243 (2001).
    31. S. M. Sze, and K. K. Ng, Physics of Semiconductor Device, Wiley-Interscience (2007).
    32. D. K. Schroder, Semiconductor Material and Device Characterization, Wiley-Interscience (2006)
    33. D. K. Schroeder, “Semiconductor Material and Device Characterization, 2nd edition”, New York: Wiley, 1998, ISBN: 0471241393.
    34. C. N. Berglund, “Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces”, IEEE Trans. Electron Devices, 13, 701-705 (1966).
    35. Y. D. Wu, T. D. Lin, T. H. Chiang, Y. C. Chang, H. C. Chiu, Y. J. Lee, M. Hong, C. A. Lin, and J. Kwo, J. Vac. Sci. Technol. B 28, C3H10 (2010).
    36. E. H. Nicollian and J.R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology”, (Wiley-Interscience, Hoboken, N.J.) 2003
    37. G. Brammertz, H. C. Lin, K. Martens, D. Mercier, S. Sioncke, A. Delabie, W. E. Wang, M. Caymax, M. Meuris, and M. Heyns, Appl. Phys. Lett. 93, 183504 (2008)
    38. G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, M. Meuris, and M. Heyns, Appl. Phys. Lett. 91, 133510 (2007)
    39. H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett. 87 (18), 182904 (2005).
    40. C. L. Hsu, Interfacial Electrical Properties of In-situ ALD-HfAlO/GaAs MOS Capacitor. Unpublished master dissertation, National Tsing Hus University, Taiwan. (2011)
    41. Y. H. Chang, C. A. Lin, Y. T. Liu, T. H. Chiang, H. Y. Lin, M. L. Huang, T. D. Lin, T. W. Pi, J. Kwo, and M. Hong, Appl. Phys. Lett. 101 (17), 172104 (2012)
    42. Y. Hwang, R. Engel-Herbert, and S. Stemmer, Appl. Phys. Lett. 98 (5), 052911 (2011).
    43. A. O’Mahony, S. Monaghan, G. Provenzano, I. M. Povey, M. G. Nolan, E. O’Connor, K. Cherkaoui, S. B. Newcomb, F. Crupi, P. K. Hurley, and M. E. Pemble, Appl. Phys. Lett. 97, 052904 (2010).
    44. L. K. Chu, C. Merckling, A. Alian, J. Dekoster, J. Kwo, M. Hong, M. Caymax, and M. Heyns, Appl. Phys. Lett. 99, 042908 (2011).
    45. J. Y. Shen, Probing ultra-thin high-κ dielectrics/GaAs(100) interface using in-situ STM. Unpublished master dissertation, National Tsing Hus University, Taiwan. (2010)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE