簡易檢索 / 詳目顯示

研究生: 劉孟寰
Liou, Meng-Huan
論文名稱: 特殊類型含孔洞單層網格多面體之展開
Unfolding Special Classes of One-Layer Lattice Polyhedra with Holes
指導教授: 潘雙洪
Poon, Sheung-Hung
口試委員: 陳朝欽
Chaur-Chin Chen
黃世強
Sai-Keung Wong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 72
中文關鍵詞: 延邊展開網格展開單層網格多面體
外文關鍵詞: Edge-unfolding, Grid-unfolding, One-layer lattice polyhedron
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 展開一個多面體是指在其表面上進行切割,使其表面可以在平面上形成一個單一相連且不自我重疊的多邊形平面。關於展開的方法上存在著各種不同的切割方式,在本論文中我們主要使用延邊展開以及網格展開,延邊展開即為沿著多面體的邊進行切割來展開其表面,而網格展開為先將各個面細切為更小的網格並延這些邊進行切割。
    單層網格多面體是一個高度為一單位且表面由單位正方形所組成的多面體,我們關注在於展開虧格大於零的單層網格多面體,我們對於含三個孔洞之單層網格多面體和含四個孔洞之單層矩形邊界網格多面體各提出了一個延邊展開演算法,此外我們對於含矩形孔洞之單層單調邊界網格多面體、含矩形孔洞之單層網格多面體、含單調孔洞之單層單調邊界網格多面體和含單調孔洞之單層網格多面體各提出了一個網格展開演算法。
    我們最後提出了兩個未解的問題:「是否任意含孔洞之單層網格多面體可以被延邊展開?」以及「是否任意不含孔洞之網格多面體可以被延邊展開?」。


    An unfolding of a polyhedron is a cutting of the polyhedron's surface so that its surface can be flattened into a single connected flat patch on the plane without any self-overlapping. There exist many unfolding methods with different cuttings. The two main method of this thesis are an edge-unfolding which is a cutting of the polyhedron's surface along its edges and a grid-unfolding which is a cutting of the polyhedron's refined surface along its edges.
    A one-layer lattice polyhedron is a polyhedron of height one, whose surface is composed of unit squares as its faces. We consider the unfolding problem on the one-layer lattice polyhedron of genus greater than zero. We propose two edge-unfolding algorithms for one-layer lattice polyhedra with three holes and one-layer lattice polyhedra with rectangular boundary and four holes. Besides, we propose four grid-unfolding algorithms for one-layer lattice polyhedra with monotone boundary and rectangular holes, one-layer lattice polyhedra with rectangular holes, one-layer lattice polyhedra with monotone boundary and holes, and one-layer lattice polyhedra with monotone holes. The basic idea of these algorithms is that we use different paths to connect the flattened patches of each hole of the given polyhedron so that no self-overlapping can occur in the final flattened patch.
    We leave the question open whether any of the general one-layer lattice polyhedra with holes can be edge-unfolded and the question whether any of the general lattice polyhedra without holes can be edge-unfolded.

    1 Introduction 1 1.1 Problem Definition . . . 2 1.2 Motivation . . . 2 1.3 Previous Works . . . 3 1.3.1 General unfolding . . . 4 1.3.2 Edge or Grid unfolding . . . 5 1.4 Our Contribution . . . 6 1.5 Outline . . . 7 2 Preliminary 8 3 Edge-unfolding One-Layer Lattice Polyhedra with Fixed Number of Holes 10 3.1 Definition . . . 10 3.2 One-layer lattice polyhedra with three holes . . . 11 3.2.1 Default path routing step . . . 12 3.2.2 Patch unfolding step . . . 13 3.2.3 Hole unfolding step . . . 18 3.3 One-layer lattice polyhedra with rectangular boundary and four holes . . . 23 3.3.1 Default path routing step . . . 24 3.3.2 Patch unfolding step . . . 25 3.3.3 Hole unfolding step . . . 27 4 Grid-unfolding One-Layer Lattice Polyhedra with Rectangular or Monotone Holes 37 4.1 Definition . . . 37 4.2 One-layer lattice polyhedra with monotone boundary and rectangular holes 39 4.2.1 Path routing step . . . 39 4.2.2 Patch unfolding step . . . 41 4.3 One-layer lattice polyhedra with rectangular holes . . . 44 4.3.1 Path routing step . . . 45 4.3.2 Patch unfolding step . . . 47 4.4 One-layer lattice polyhedra with monotone boundary and holes . . . 49 4.4.1 Path routing step . . . 49 4.4.2 Patch unfolding step . . . 55 4.5 One-layer lattice polyhedra with monotone holes . . . 57 4.5.1 Path routing step . . . 58 4.5.2 Patch unfolding step . . . 59 5 Discussion and experiments 64 6 Open Problem 68

    [1] Zachary Abel and Erik D. Demaine. Edge-unfolding orthogonal polyhedra is strongly NP-complete. Proceedings of the 23rd Canadian Conference on Computational Geometry, Toronto, Ontario, Canada, 2011.
    [2] Aleksandr D. Alexandrov. Vupyklue mnogogranniki. Gosydarstvennoe Izdatelstvo Tehno-Teoreticheskoi Literaturu, 1950.
    [3] Aleksandr D. Alexandrov. Convex polyhedra. Monographs in Mathematics, 2005. Translation of the 1950 Russian edition by N. S. Dairbekov, S. S Kutateladze, and A. B. Sossinsky.
    [4] Greg Aloupis, Prosenjit Bose, Sébastien Collette, Erik D. Demaine, Martin L. Demaine, Karim Douïeb, Vida Dujmovic, John Iacono, Stefan Langerman, and Pat Morin. Common unfoldings of polyominoes and polycubes. In Jin Akiyama, Jiang Bo, Mikio Kano, and Xuehou Tan, editors, CGGA, volume 7033 of Lecture Notes in Computer Science, pages 44–54. Springer, 2010.
    [5] Greg Aloupis, Erik D. Demaine, Stefan Langerman, Pat Morin, Joseph O’Rourke, Ileana Streinu, and Godfried T. Toussaint. Unfolding polyhedral bands. In CCCG, pages 60–63, 2004.
    [6] Greg Aloupis, Erik D. Demaine, Stefan Langerman, Pat Morin, Joseph O’Rourke, Ileana Streinu, and Godfried T. Toussaint. Edge-unfolding nested polyhedral bands. Comput. Geom., 39(1):30–42, 2008.
    [7] Boris Aronov and Joseph O’Rourke. Nonoverlap of the star unfolding. Discrete & Computational Geometry, 8:219–250, 1992.
    [8] Marshall Bern, Erik D. Demaine, David Eppstein, Eric Kuo, Andrea Mantler, and Jack Snoeyink. Ununfoldable polyhedra with convex faces. Computational Geometry: Theory and Applications, 24(2):51–62, February 2003.
    [9] Therese Biedl, Erik Demaine, Martin Demaine, Anna Lubiw, Mark Overmars, Joseph O’Rourke, Steve Robbins, and Sue Whitesides. Unfolding some classes of orthogonal polyhedra. Proceedings of the 10th Canadian Conference on Computational Geometry, Montréal, Québec, Canada, 1998.
    [10] Mirela Damian, Erik Demaine, and Robin Flatland. Unfolding orthogonal polyhedral with quadratic refinement: The delta-unfolding algorithm. Graphs and Combinatorics, pages 1–16, 2012.
    [11] Mirela Damian, Robin Flatland, Henk Meijer, and Joseph O’Rourke. Unfolding well-separated orthotrees. 15th Annu. Fall Workshop Comput. Geom, pages 23–25, 2005.
    [12] Mirela Damian, Robin Flatland, and Joseph O’Rourke. Epsilon-unfolding orthogonal polyhedra. Graphs and Combinatorics, 23(1):179–194, 2007.
    [13] Mirela Damian, Robin Y. Flatland, and Joseph O’Rourke. Grid vertex-unfolding orthogonal polyhedra. Discrete & Computational Geometry, 39(1-3):213–238, 2008.
    [14] Mirela Damian, Robin Y. Flatland, and Joseph O’Rourke. Unfolding Manhattan towers. Comput. Geom., 40(2):102–114, 2008.
    [15] Mirela Damian and Henk Meijer. Grid edge-unfolding orthostacks with orthogonally convex slabs. Proc. of the 14th Workshop on Computational Geometry, pages 20–21, 2004.
    [16] Erik D. Demaine, David Eppstein, Jeff Erickson, George W. Hart, and Joseph O’Rourke. Vertex-unfoldings of simplicial manifolds. CoRR, cs.CG/0110054, 2001.
    [17] Erik D. Demaine, David Eppstein, Jeff Erickson, George W. Hart, and Joseph O’Rourke. Vertex-unfoldings of simplicial polyhedra. CoRR, cs.CG/0107023, 2001.
    [18] Erik D. Demaine, John Iacono, and Stefan Langerman. Grid vertex-unfolding orthostacks. Int. J. Comput. Geometry Appl., 20(3):245–254, 2010.
    [19] Erik D. Demaine and Joseph O’Rourke. A survey of folding and unfolding in computational geometry. In Jacob E. Goodman, János Pach, and Emo Welzl, editors, Combinatorial and Computational Geometry, volume 52 of Mathematical Sciences Research Institute Publications, pages 167–211. Cambridge University Press, August 2005.
    [20] Erik D. Demaine and Joseph O’Rourke. Geometric folding algorithms - linkages, origami, polyhedra. Cambridge University Press, 2007.
    [21] Albrecht Durer. Unterweysung der Messung mit dem Zirkel und Richtscheyt, in Linien Ebnen und gantzen Corporen. Verlag Alfons Uhl, Nordlingen, 1525.
    [22] S. K. Gupta, K. H. Kim D. A. Bourne, and S. S. Krishnan. Automated process planning for sheet metal bending operations. Journal of Manufacturing Systems, (17):338–360, 1998.
    [23] Jin ichi Itoh, Joseph O’Rourke, and Costin Vîlcu. Unfolding convex polyhedra via quasigeodesics. CoRR, abs/0707.4258, 2007.
    [24] Meng-Huan Liou, Sheung-Hung Poon, and Yu-Jie Wei. On edge-unfolding onelayer lattice polyhedra with cubic holes. The 20th International Computing and Combinatorics Conference, Atlanta, Georgia, USA, 2014.
    [25] Anna Lubiw, Erik D. Demaine, Martin L. Demaine, Arlo Shallit, and Jonah Shallit. Zipper unfoldings of polyhedral complexes. In CCCG, pages 219–222, 2010.
    [26] Joseph O’Rourke. Unfolding orthogonal terrains. Technical Report 084, Smith College, July 2007. arXiv:0707.0610v4 [cs.CG].
    [27] Joseph O’Rourke. Unfolding orthogonal polyhedra. In Proc. Snowbird Conference Discrete and Computational Geometry: Twenty Years Later, pages 307–317. 2008.
    [28] Joseph O’Rourke. Unfolding polyhedra. Solicited for Shaping Space: A Polyhedral Approach, 2008.
    [29] Geoffrey C. Shephard. Convex polytopes with convex nets. Mathematical Proceedings of the Cambridge Philosophical Society, (78):389–403, 1975.
    [30] Raphael Straub and Hartmut Prautzsch. Creating optimized cut-out sheets for paper models from meshes. SIAM Conf. Geometric Design and Computing, 2005.
    [31] Shigeo Takahashi, Hsiang-Yun Wu, Seow Hui Saw, Chun-Cheng Lin, and Hsu-Chun Yen. Optimized topological surgery for unfolding 3D meshes. Computer Graphics Forum, 30(7):2077–2086, 2011.
    [32] Cheng-Hua Wang. Manufacturability-driven decomposition of sheet metal products. ACM Trans. Program. Lang. Syst., 15(5):795–825, November 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE