簡易檢索 / 詳目顯示

研究生: 施易緯
Yi-Wei Shih
論文名稱: 二氧化碳膨脹液體中對二甲苯氫化之研究
Hydrogenation of p-Xylene in CO2-Expanded Liquid
指導教授: 談駿嵩
Chung-Sung Tan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 87
中文關鍵詞: 二氧化碳膨脹液體
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對二甲苯(p-Xylene)為對苯二甲酸(Terephthalic Acid)之原料,而對苯二甲酸主要用途為聚對苯二甲酸二乙酯(PET)之合成。由於PET結構中含苯環,微生物無法分解其結構,若能將p-Xylene中之苯環完全氫化,再將其甲基氧化為羧基,以此化合物與乙二醇進行聚合即可得結構同PET但不含苯環之生物可分解聚合物。為達成此目的, p-Xylene氫化反應速率之提升即成為一重要課題。
    在文獻中已證實,若在液相中加入高壓二氧化碳,可使溶液膨脹而形成二氧化碳膨脹液體(CO2-Expanded Liquid),增加反應物氣體如氫氣或氧氣於液體中之溶解度,並降低溶液之黏度,對物質在觸媒內部或液相中之質傳速率有所助益,進而增加反應速率。本研究在一連續式固定床反應器中進行p-Xylene液相氫化反應,並於系統中加入高壓二氧化碳以形成CO2-Expanded Liquid,觀察在不同二氧化碳含量下p-Xylene轉化率、產物Cis/trans比及反應選擇率的變化。
    研究發現以Pt/γ-Al2O3、Pd/γ-Al2O3、Ru/γ-Al2O3及Ru/SiO2為觸媒時,在系統中加入二氧化碳後觸媒皆有明顯失活的現象。為了解觸媒的失活是否與二氧化碳有關,我們在反應物通入系統前先通入二氧化碳,使觸媒與二氧化碳接觸後,停止二氧化碳進料並通入反應物,結果發現觸媒已失活,故可知觸媒的失活為二氧化碳所造成。由於以γ-Al2O3及SiO2為擔體時,觸媒皆有失活的現象,故我們再將擔體改為Carbon,以商用Pd/C觸媒進行測試。實驗發現在CO2/H2莫耳比為0.1時轉化率確實有提升,觸媒無失活。由以上實驗可知觸媒的失活與擔體有關,以γ-Al2O3及SiO2為擔體時有失活的現象,但以Carbon為擔體時則無。推測是因金屬擔載於γ-Al2O3及SiO2時,二氧化碳會吸附於觸媒表面,影響氫氣之吸附而使觸媒失活。使用Carbon時則因金屬於擔體上散布型態的不同;使用Carbon時則因金屬於擔體上散布型態的不同,而不會產生此現象。未來可使用不同分析方式進一步地確認觸媒失活之原因,以求在CO2-Expanded Liquid之研究中能選擇一最佳之觸媒擔體。


    目錄 摘要 I 目錄 III 表目錄 V 圖目錄 VII 第一章 緒論 1 第二章 文獻回顧 4 2-1 氫化觸媒 4 2-2 擔體及擔體觸媒之製備 5 2-3 二甲苯氫化之文獻 8 2-4 存在高壓二氧化碳時進行化學反應之研究 11 第三章 實驗部份 22 3-1 藥品 22 3-2 實驗設備與儀器 23 3-3 實驗裝置與步驟 24 3-3-1 批次反應器 24 3-3-2 連續式固定床反應器 24 3-3-2-1 反應器及加熱爐 25 3-3-2-2 進料控制設備 26 3-3-3 實驗步驟 26 3-3-3-1 觸媒製備及前處理 26 3-3-3-1-1 Pt/γ-Al2O3觸媒製備(常壓操作) 26 3-3-3-1-2 Pd/γ-Al2O3觸媒製備(常壓操作) 27 3-3-3-1-3 Ru/γ-Al2O3觸媒製備(常壓操作) 28 3-3-3-1-4 Ru/SiO2觸媒製備(常壓操作) 28 3-3-3-1-5 商用Pt/γ-Al2O3觸媒前處理(常壓操作) 29 3-3-3-1-6 商用Pd/C觸媒前處理(常壓操作) 29 3-3-3-2 批次反應器p-Xylene液相氫化反應(高壓操作) 29 3-3-3-3 連續式反應器p-Xylene液相氫化反應(高壓操作) 30 第四章 實驗結果與討論 35 4-1 批次反應器 36 4-2-1 Pt/γ-Al2O3觸媒部分 36 4-2連續式固定床反應器 36 4-2-1 Pt/γ-Al2O3觸媒部分 37 4-2-2 Pd/γ-Al2O3觸媒部分 38 4-2-3 Ru/γ-Al2O3觸媒部分 39 4-2-4 Ru/SiO2觸媒部分 40 4-2-5 商用Pt/γ-Al2O3觸媒部分 41 4-2-6 商用Pd/C觸媒部分 41 第五章 結論 80 第六章 參考文獻 83 表目錄 表2-1 Xylene氫化之操作條件 17 表2-2 存在高壓二氧化碳時進行化學反應之操作條件 18 表4-1(a) 使用Pt/γ-Al2O3,在純氫氣下壓力之影響(第五小時數據) 44 表4-1(b) 使用Pt/γ-Al2O3,在純氫氣下壓力之影響 45 表4-2 使用Pt/γ-Al2O3,在7.09 MPa下不同CO2分壓比之影響 1 (第六小時數據) 46 表4-3(a) 以Hexane為溶劑,在7.09 MPa下不同CO2分壓比之影響 1 (第六小時數據) 47 表4-3(b) 以Hexane為溶劑,在7.09 MPa下不同CO2分壓比之影響 48 表4-4(a) 使用Pt/γ-Al2O3,在純氫氣下壓力之影響(第五小時數據) 49 表4-4(b) 使用Pt/γ-Al2O3,在純氫氣下壓力之影響 50 表4-5 使用Pt/γ-Al2O3,在7.09 MPa下CO2/H2莫耳比之影響 1 (第五小時數據) 51 表4-6(a) 使用Pd/γ-Al2O3,在純氫氣下壓力之影響(第五小時數據) 52 表4-6(b) 使用Pd/γ-Al2O3,在純氫氣下壓力之影響 53 表4-7(a) 使用Pd/γ-Al2O3,在7.09 MPa下CO2/H2莫耳比之影響 1 (第五小時數據) 54 表4-7(b) 使用Pd/γ-Al2O3,在7.09 MPa下CO2/H2莫耳比之影響 55 表4-8(a) 使用Ru/γ-Al2O3,在純氫氣下壓力之影響(第五小時數據) 56 表4-8(b) 使用Ru/γ-Al2O3,在純氫氣下壓力之影響 57 表4-9(a) 使用Ru/γ-Al2O3,在3.54 MPa下CO2/H2莫耳比之影響 1 (第五小時數據) 58 表4-9(b) 使用Ru/γ-Al2O3,在3.54 MPa下CO2/H2莫耳比之影響 59 表4-10(a) 使用Ru/γ-Al2O3,在4.05 MPa下CO2/H2莫耳比之影響 1 (第五小時數據) 60 表4-10(b) 使用Ru/γ-Al2O3,在4.05 MPa下CO2/H2莫耳比之影響 61 表4-11(a) 使用Ru/γ-Al2O3,在5.07 MPa下CO2/H2莫耳比之影響 1 (第五小時數據) 62 表4-11(b) 使用Ru/γ-Al2O3,在5.07 MPa下CO2/H2莫耳比量之影響 63 表4-12(a) 使用Ru/SiO2,在3.54 MPa下CO2/H2莫耳比之影響 1 (第五小時數據) 64 表4-12(b) 使用Ru/SiO2,在3.54 MPa下CO2/H2莫耳比之影響 65 表4-13(a) 使用商用Pt/γ-Al2O3,在7.09 MPa下CO2/H2莫耳比之影響 1 (第五小時數據) 66 表4-13(b) 使用商用Pt/γ-Al2O3,在7.09 MPa下CO2/H2莫耳比之影響 67 表4-14(a) 使用商用Pd/C,在3.54 MPa下CO2/H2莫耳比之影響 1 (第五小時數據) 68 表4-14(b) 使用商用Pd/C,在3.54 MPa下CO2/H2莫耳比之影響 69 表4-15(a) 使用商用Pd/C,在7.09 MPa下CO2/H2莫耳比之影響 1 (第五小時數據) 70 表4-15(b) 使用商用Pd/C,在7.09 MPa下CO2/H2莫耳比之影響 71 圖目錄 圖1-1 p-Xylene結構式 3 圖1-2 Terephthalic Acid結構式 3 圖1-3 PET結構式 3 圖1-4 1,4-Dimethylcyclohexane結構式 3 圖1-5 1,4-Cyclohexadicarboxylic Acid結構式 3 圖2-1 Langmuir等溫吸附曲線 19 圖2-2 金屬於擔體上之散布型態 19 圖2-3 Desorption-Reabsorption Mechanism 20 圖2-4 Roll-Over Mechanism 20 圖2-5 在二氧化碳膨脹乙醇中進行二氧化碳氫化反應之相組成 21 圖2-6 存在高壓二氧化碳時進行CAL氫化反應之相組成 21 圖3-1 批次p-Xylene氫化實驗裝置 31 圖3-2 高壓釜內部構造 32 圖3-3 連續式p-Xylene氫化實驗裝置 33 圖3-4 固定床反應器之構造 34 圖4-1(a) 使用Pt/γ-Al2O3,在純氫氣、不同壓力下時間與轉化率之關係 72 圖4-1(b) 使用Pt/γ-Al2O3,在純氫氣下壓力與轉化率之關係(第六小時數據) 72 圖4-2(a) 使用Pt/γ-Al2O3,在純氫氣、不同壓力下時間與轉化率之關係 73 圖4-2(b) 使用Pt/γ-Al2O3,在純氫氣下壓力與轉化率之關係(第五小時數據) 73 圖4-3(a) 使用Pd/γ-Al2O3,在純氫氣、不同壓力下時間與轉化率之關係 74 圖4-3(b) 使用Pd/γ-Al2O3,在純氫氣下壓力與轉化率之關係(第五小時數據) 74 圖4-4 使用Pd/γ-Al2O3,在7.09 MPa下CO2/H2莫耳比與轉化率之關係 1 (第五小時數據) 75 圖4-5(a) 使用Ru/γ-Al2O3,在純氫氣、不同壓力下時間與轉化率之關係 75 圖4-5(b) 使用Ru/γ-Al2O3,在純氫氣下壓力與轉化率之關係(第五小時數據) 76 圖4-5(c) 使用Ru/γ-Al2O3,在純氫氣下壓力與1,4-DME選擇率之關係 1 (第五小時數據) 76 圖4-6(a) 使用Ru/γ-Al2O3,在不同壓力下CO2/H2莫耳比與轉化率之關係 1 (第五小時數據) 77 圖4-6(b) 使用Ru/γ-Al2O3,在不同壓力下CO2/H2莫耳比與1,4-DME選擇率 1 之關係(第五小時數據) 77 圖4-7(a) 使用Ru/SiO2,在3.54 MPa下CO2/H2莫耳比與轉化率之關係 1 (第五小時數據) 78 圖4-7(b) 使用Ru/SiO2,在3.54 MPa下CO2/H2莫耳比與1,4-DME選擇率 1 之關係(第五小時數據) 78 圖4-8 使用Pd/C,在不同壓力下CO2/H2莫耳比與轉化率之關係 1 (第五小時數據) 79

    Arcoya, A., Seoane, X.L., Gomez-Sainero, L.M., “Activity of Pd/Al2O3 and Ru/Al2O3 Catalysts in the Hydrogenation of o-Xylene - Effect of Thiophene”, Appl. Surf. Sci., 2003, 211, 341-351.

    Augustine, R.L., Heterogeneous Catalysis for the Synthetic Chemist, Marcel Dekker, 1995.

    Bell, A. T., “Supports and Metal-Support Interaction in Catalyst Design”, Catalyst Design-Progess and Perspectives, John Wiley & Sons, 1987.

    Bond, G.C., Heterogeneous Catalysis Principles and Applications 2nd, Oxford, 1987.

    Chan, J.C., Tan, C.S., “Hydrogenation of Tetralin Over Pt/γ-Al2O3 in Trickle-Bed Reactor in the Presence of Compressed CO2”, Energy & Fuels, 2006, 20, 771-777.

    Chen, C.W., Yu, H., Huang, M.Y., Jiang, Y.Y., “Catalytic Behavior of Silica-Supported Polysilazane Platinum Complex in the Hydrogenation of Xylenes”, Reactive Polymers, 1995, 24, 255-260.

    Chouchi, D., Gourgouillon, D., Courel, M., Vital, J., da Ponte, M.N., “The Influence of Phase Behavior on Reactions at Supercritical Conditions: The Hydrogenation of α-Pinene”, Ind. Eng. Chem. Res., 2001, 40, 2551-2554.

    Devetta, L., Giovanzana, A., Canu, P., Bertucco, A., Minder, B.J.,“Kinetic Experiments and Modeling of a Three-Phase Catalytic Hydrogenation Reaction in Supercritical CO2”, Catalysis Today, 1999, 48, 337-345.

    Fujita, S., Akihara, S., Zhao, F.Y., Liu, R.X., Hasegawa, M., Arai, M., “Selective Hydrogenation of Cinnamaldehyde Using Ruthenium- Phosphine Complex Catalysts with Multiphase Reaction Systems in and Under Pressurized Carbon Dioxide: Significance of Pressurization and Interfaces for the Control of Selectivity”, J. Catal., 2005, 236, 101-111.

    Grenoble, D.C., Estadt, M.M., Ollis, D.F., “The Chemistry and Catalysis of the Water Gas Shift Reaction .1. The Kinetics Over Supported Metal- Catalysts”, J. Catal., 1981, 67, 90-102.

    Grift, V. D., Mulder, A., Gues, J. W., “Characterization of Silica-Supported Copper Catalysts bt Means of Temperature Programmed Redution”, Appl. Catal., 1990, 60, 181-192.

    Huang, T.C., Kang, B.C., “Naphthalene Hydrogenation Over Pt/Al2O3 Catalyst in a Trickle-Bed Reactor”, Ind. Eng. Chem. Res., 1995, 34, 2349-2357.

    Inoue, Y., Herrmann, J.M., Schmidt, H., Butt, J.B., Cohen, J.B., “Pt/SiO2 IV. Isotopic Exchange Between Cyclopentane and Deuterium”, J. Catal., 1978, 53, 401-413.

    Juszczyk, W., Karpinski, Z., Ratajczykowa, I., Stanasiuk, Z., Zielinski, J., Sheu, L.L., Sachtler, W.M.H., “Characterization of Supported Palladium Catalysts .3. Pd/Al2O3”, J. Catal., 1989, 120, 68-77.

    Keane, M.A., “The Hydrogenation of o-, m-, and p-Xylene Over Ni/SiO2”, J. Catal., 1997, 166, 347-355.

    Lekhal, A., Glasser, B. J., Khinast, J. G., “Impact of Drying on the Catalyst Profile in Supported Impregnation Catalysts”, Chem. Eng. Sci., 2001, 56, 4473-4487.

    Mazzieri, V., Coloma-Pascual, F., Gonzalez, M., L'Argentiere, P., Figoli, N., “Preparation of Ru/Al2O3 Catalysts From RuCl3”, React. Kinet. Catal. Lett., 2002, 76, 53-59.

    Musie, G., Wei, M., Subramaniam, B., Busch, D.H., “Catalytic Oxidations in Carbon Dioxide-Baseed Reaction Media, Including Novel CO2-Expanded Phases”, Coord. Chem. Rev., 2001, 219, 789-820.

    Neyestanaki, A.K., Maki-Arvela, P., Backman, H., Karhu, H., Salmi, T., Vayrynen, J., Murzin, D.Y., “Kinetics and Stereoselectivity of o-Xylene Hydrogenation Over Pd/Al2O3”, J. Mol. Catal. A-Chem., 2003, 193, 237-250.

    Phiong, H.S., Lucien, F.P., Adesina, A.A., “Three-Phase Catalytic Hydrogenation of α-Methylstyrene in Supercritical Carbon Dioxide”, J. Supercrit. Fluids., 2003, 25, 155-164.

    Poliakoff, M., Meehan, N.J., Ross, S.K., “A Supercritical Success Story” Chem. Ind., 1999, 19, 750-752.

    Rahaman, M.V., Vannice M.A., “The Hydrogenation of Toluene and ortho-Xylene, meta-Xylene, and para-Xylene Over Palladium. 1. Kinetic- Behavior and Ortho-Xylene Isomerization”, J. Catal., 1991, 127,: 251-266.

    Rahaman, M.V., Vannice M.A., “The Hydrogenation of Toluene and ortho-Xylene, meta-Xylene, and para-Xylene Over Palladium. 2. Reaction Model”, J. Catal., 1991, 127, 267-275.

    Reyes, P., Konig, M.E., Pecchi, G., Concha, I., Granados, M.L., Fierro, J.L.G., “o-Xylene Hydrogenation on Supported Ruthenium Catalysts” Catal. Lett., 1997, 46, 71-75.

    Sirijaruphan, A., Goodwin, J.G., Rice, R.W., “Investigation of the Initial Rapid Deactivation of Platinum Catalysts During the Selective Oxidation of Carbon Monoxide”, J. Catal., 2004, 221, 288-293.

    Smeds, S., Murzin, D., Salmi, T., “Kinetics of m-Xylene Hydrogenation on Ni/Al2O3”, Appl. Catal. A-Gen., 1996, 141, 207-228.

    Smeds, S., Murzin, D., Salmi, T., “Kinetics of Ethylbenzene Hydrogenation on Ni/Al2O3”, Appl. Catal. A-Gen., 1995, 125, 271-291.

    Smeds, S., Murzin, D., Salmi, T., “Gas Phase Hydrogenation of o- and p-Xylene on Ni/Al2O3 - Kinetic Modelling”, Appl. Catal. A-Gen., 1997, 150, 115-129.

    Smeds, S., Salmi, T., Murzin, D., “Gas Phase Hydrogenation of o- and p-Xylene on Ni/Al2O3 - Kinetic Behaviour”, Appl. Catal. A-Gen., 1996, 145, 253-265.

    Tan C.S., Wu, Y.C., “Supercritical Fluid Distribution in a Packed- Column”, Chem. Eng. Commun., 1988, 68, 119-131.

    Toppinen, S., Salmi, T., Rantakyla, T.K., Aittamaa, J., “Liquid-phase Hydrogenation Kinetics of Aromatic Hydrocarbon Mixtures”, Ind. Eng. Chem. Res., 1997, 36, 2101-2109.

    Viniegra, M., Cordoba, G., Gomez, R., “Gas-Phase Hydrogenation of ortho-Xylene Over Palladium Catalysts”, J. Mol. Catal., 1990, 58, 107-114.

    Xie, X.F., Liotta, C.L., Eckert, C.A., “CO2-Protected Amine Formation From Nitrile and Imine Hydrogenation in Gas-Expanded Liquids”, Ind. Eng. Chem. Res., 2004, 43, .7907-7911.

    Zhang, Y.P., Fei, J.H., Yu, Y.M., Zheng, X.M., “Silica Immobilized Ruthenium Catalyst Used for Carbon Dioxide Hydrogenation to Formic Acid (I): The Effect of Functionalizing Group and Additive on the Catalyst Performance”, Catal. Commun., 2004, 5, 643-646.

    Zhao, F.Y., Fujita, S., Sun, J.M., Ikushima, Y., Arai, M., “Carbon Dioxide-Expanded Liquid Substrate Phase: An Effective Medium for Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol”,
    Chem. Commun., 2004, 20, 2326-2327.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE