簡易檢索 / 詳目顯示

研究生: 楊鈞郡
Yang, Jyun-Jyun
論文名稱: 具剛性環烷基橋雙官能基陽離子之光游離誘發超快電荷轉移與構型緩解動態學研究
Studies of Photoionization-Induced Ultrafast Charge Transfer and Conformational Relaxation Dynamics in A Cycloalkyl-Bridged Bifunctional Molecular Cations
指導教授: 鄭博元
Cheng, Po-Yuan
口試委員: 吳宇中
Wu, Yu-Jong
楊自雄
Yang, Tzu-Hsiung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 104
中文關鍵詞: 飛秒雷射脈衝光游離-光裂解電荷轉移
外文關鍵詞: Femtosecond laser pulse, Photoionization-Photofragmentation, Charge Transfer
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們利用飛秒激發-探測光游離光裂解結合飛行時間質譜技術產生離子損耗瞬時訊號來研究MNMA (methyl[(1,2,3,4-tetrahydronaphthalen-2-yl)methyl]amine)的陽離子動態學。我們利用266 nm的激發脈衝以1+1 共振增強多光子游離技術將MNMA分子透過苯環端的S1 state游離至陽離子D1/D2 state,隨後陽離子D1/D2 state將緩解至陽離子D0 state,在陽離子緩解過程中,我們利用波長位於550~1500 nm之探測脈衝將陽離子激發至更高能態,使陽離子裂解產生離子碎片而造成母陽離子訊號的損耗,並利用飛行時間質譜儀隨著激發與探測脈衝間的延遲時間測得離子損耗瞬時訊號,以研究陽離子緩解的動力學過程。我們利用各波長下之最大離子損耗率並透過內插法得到超快時間解析離子光分解光譜,並在光譜中發現三個特徵鋒,分別為550~675 nm的譜帶、750 nm的譜帶及1250 nm的譜帶。我們以連續動力學模型擬合MNMA分子的離子損耗瞬時訊號並得到三個時間常數,時間常數τ1為0.08~0.2 ps、時間常數τ2為15~26 ps及時間常數τ3為370~475 ps。我們將時間常數τ1指認為MNMA陽離子D1/D2 state緩解至D0 state的電荷轉移過程,時間常數τ2及時間常數τ3指認為MNMA陽離子在D0 state構型緩解再平衡的過程。我們實驗所測得的MNMA超快時間解析離子光分解光譜中,550~675 nm的譜帶為陽離子D1/D2 state之吸收,750 nm的譜帶為剛緩解至陽離子D0 state初始構型之吸收,1250 nm的譜帶為陽離子D0 state較穩定構型之吸收。在較短延遲時間範圍內,550~675 nm譜帶及1250 nm譜帶隨著延遲時間增加而有互相消長之行為,此行為代表電荷轉移過程的發生,在較長延遲時間範圍內,750 nm的譜帶及1250 nm譜帶隨著延遲時間增加而有互相消長之行為,此行為代表構型緩解再平衡過程的發生。


    In this thesis, we employed femtosecond pump-probe photoionization-photofragmentation spectroscopy in combination with time-of-flight mass spectrometry to observe ion-depletion transient signals for investigating the cation dynamics of MNMA (methyl[(1,2,3,4-tetrahydronaphthalen-2-yl)methyl]amine). We used pump pulse at 266 nm through 1+1 resonance-enhanced multiphoton ionization (REMPI) to locally ionize MNMA molecules via the phenyl group to reach the cation D1/D2 state. Subsequently, the D1/D2 state rapidly relaxed to the D0 state. During the relaxation process, we sent in probe pulses between 550~1500 nm to excite the cation to higher-energy states, leading to fragmentation of the cation and decreasing of the parent cation signal. We measured ion depletion transients by monitoring the cation signal as a function of the pump-probe delay time. We used maximum depletion yields at various wavelengths and obtained an ultrafast time-resolved ion photofragmentation spectrum of MNMA cation by means of interpolation. In this spectrum, we found three different absorption bands at 550–675 nm, 750 nm, and 1250 nm. We used a consecutive kinetic model to fit the ion depletion transients and obtained three time constants: τ1 of MNMA is about 0.08~0.2 ps, τ2 is about 15~26 ps, and τ3 is about 370~475 ps. We assigned τ1 to the charge transfer of MNMA cations from the D1/D2 state to the D0 state. We assigned τ2 and τ3 to the equilibrium process among conformers in the D0 state. The ultrafast time-resolved ion photofragmentation spectrum of MNMA exhibited three different bands. The 550~675 nm spectral band was due to the absorption of the D1/D2 state, the 750 nm band was due to the absorption of MNMA cations similar to the initial configuration of the D0 state, and the 1250 nm band was due to the absorption of the more stable configuration of the D0 state. In the short delay time scale, the 550~675 nm band decreases and the 1250 nm band increases with increasing delay time, reflecting the occurrence of charge transfer processes. In the longer delay time scales, the 750 nm band increases and the 1250 nm band decreases with increasing delay time, reflecting the occurrence of the equilibrium process among various stable conformers in the D0 state.

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 引文 1 1.2 文獻回顧 3 1.3 研究動機 7 第二章 實驗系統與技術 11 2.1 飛秒激發-探測脈衝雷射技術 11 2.2 共振增強多光子游離技術 12 2.3 激發-探測光激發-光游離以及激發-探測光游離-光裂解 13 2.4 飛秒脈衝雷射系統 15 2.4.1 振盪器系統 15 2.4.2 脈衝能量放大器 21 2.5 波長調變儀 29 2.5.1 波長轉換裝置 29 2.5.2 光學助變放大器 30 2.6 分子束系統 32 2.6.1 超音速分子束 33 2.6.2 分子束樣品進樣裝置 37 2.6.3 分子束系統架設 37 2.7 飛行時間質譜儀 39 2.8 實驗光路設計 42 2.9 訊號擷取系統 44 2.10 儀器響應函數 46 第三章 實驗結果與討論 48 3.1 MNMA分子光游離質譜 48 3.2 激發-探測光游離-光裂解實驗條件及驗證 49 3.2.1 激發與探測雷射脈衝能量比例對離子瞬時訊號之影響 49 3.2.2 光游離-光裂解離子損耗瞬時訊號驗證 52 3.2.3 離子損耗率與探測雷射脈衝能量依存性 54 3.3 不同探測脈衝波長離子損耗率量測 56 3.4 550~1500 nm探測脈衝波長測量 MNMA陽離子損耗瞬時訊號 58 3.4.1 短時間尺度MNMA陽離子損耗瞬時訊號 58 3.4.2 極短時間尺度MNMA陽離子損耗瞬時訊號 60 3.4.3 中時間尺度MNMA陽離子損耗瞬時訊號 61 3.4.4 長時間尺度MNMA陽離子損耗瞬時訊號 64 3.5 超快時間解析離子光分解光譜 65 3.6 MNMA陽離子損耗瞬時訊號之動力學模型擬合結果 72 第四章 理論計算與綜合討論 81 4.1 理論計算方法 81 4.2 理論計算結果 83 4.2.1 MNMA中性S0 state構型 83 4.2.2 MNMA陽離子D0 state 87 4.2.3 綜合討論 90 第五章 結論 96 附錄 98 附錄I MNMA分子在中性S0 state時的每種構型實際結構圖 98 附錄II MNMA陽離子在D0 state時的每種構型實際結構圖 100 參考文獻 101

    1. Barber, J.; Andersson, B., Revealing the blueprint of photosynthesis. Nature 1994, 370 (6484), 31-34.
    2. Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; Van Grondelle, R., Lessons from nature about solar light harvesting. Nature chemistry 2011, 3 (10), 763-774.
    3. Hu, Y.; Yellappa, S.; Thomas, M. B.; Jinadasa, R. W.; Matus, A.; Shulman, M.; D'Souza, F.; Wang, H., β‐Functionalized Push–Pull opp‐Dibenzoporphyrins as Sensitizers for Dye‐Sensitized Solar Cells. Chemistry–An Asian Journal 2017, 12 (20), 2749-2762.
    4. Labrunie, A.; Habibi, A. H.; Dabos-Seignon, S.; Blanchard, P.; Cabanetos, C., Exploration of the structure-property relationship of push-pull based dyads for single-molecule organic solar cells. Dyes and Pigments 2019, 170, 107632.
    5. Schlag, E. W.; Sheu, S. Y.; Yang, D. Y.; Selzle, H. L.; Lin, S. H., Distal charge transport in peptides. Angewandte Chemie International Edition 2007, 46 (18), 3196-3210.
    6. Shah, A.; Adhikari, B.; Martic, S.; Munir, A.; Shahzad, S.; Ahmad, K.; Kraatz, H.-B., Electron transfer in peptides. Chemical Society Reviews 2015, 44 (4), 1015-1027.
    7. Yu, J.; Horsley, J. R.; Moore, K. E.; Shapter, J. G.; Abell, A. D., The effect of a macrocyclic constraint on electron transfer in helical peptides: A step towards tunable molecular wires. Chemical Communications 2014, 50 (14), 1652-1654.
    8. Kawai, K.; Majima, T., Hole transfer kinetics of DNA. Accounts of chemical research 2013, 46 (11), 2616-2625.
    9. Meggers, E.; Michel-Beyerle, M. E.; Giese, B., Sequence dependent long range hole transport in DNA. Journal of the American Chemical Society 1998, 120 (49), 12950-12955.
    10. Isied, S. S.; Ogawa, M. Y.; Wishart, J. F., Peptide-mediated intramolecular electron transfer: long-range distance dependence. Chemical reviews 1992, 92 (3), 381-394.
    11. Lewis, F. D.; Letsinger, R. L.; Wasielewski, M. R., Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Accounts of chemical research 2001, 34 (2), 159-170.
    12. Adams, D. M.; Brus, L.; Chidsey, C. E.; Creager, S.; Creutz, C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A., Charge transfer on the nanoscale: current status. The Journal of Physical Chemistry B 2003, 107 (28), 6668-6697.
    13. Gilbert, M.; Albinsson, B., Photoinduced charge and energy transfer in molecular wires. Chemical Society Reviews 2015, 44 (4), 845-862.
    14. Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R., Molecular-wire behaviour in p-phenylenevinylene oligomers. Nature 1998, 396 (6706), 60-63.
    15. Jortner, J.; Bixon, M.; Wegewijs, B.; Verhoeven, J. W.; Rettschnick, R. P., Long-range, photoinduced charge separation in solvent-free donor—bridge—acceptor molecules. Chemical physics letters 1993, 205 (4-5), 451-455.
    16. Bixon, M.; Jortner, J.; Cortes, J.; Heitele, H.; Michel-Beyerle, M., Energy gap law for nonradiative and radiative charge transfer in isolated and in solvated supermolecules. The Journal of Physical Chemistry 1994, 98 (30), 7289-7299.
    17. Weinkauf, R.; Schanen, P.; Yang, D.; Soukara, S.; Schlag, E., Elementary processes in peptides: electron mobility and dissociation in peptide cations in the gas phase. The Journal of Physical Chemistry 1995, 99 (28), 11255-11265.
    18. Weinkauf, R.; Schanen, P.; Metsala, A.; Schlag, E.; Bürgle, M.; Kessler, H., Highly efficient charge transfer in peptide cations in the gas phase: threshold effects and mechanism. The Journal of Physical Chemistry 1996, 100 (47), 18567-18585.
    19. Weinkauf, R.; Lehr, L.; Metsala, A., Local ionization in 2-phenylethyl-N, N-dimethylamine: charge transfer and dissociation directly after ionization. The Journal of Physical Chemistry A 2003, 107 (16), 2787-2799.
    20. Lehr, L.; Horneff, T.; Weinkauf, R.; Schlag, E., Femtosecond dynamics after ionization: 2-phenylethyl-N, N-dimethylamine as a model system for nonresonant downhill charge transfer in peptides. The Journal of Physical Chemistry A 2005, 109 (36), 8074-8080.
    21. Cheng, W.; Kuthirummal, N.; Gosselin, J. L.; Sølling, T. I.; Weinkauf, R.; Weber, P. M., Control of local ionization and charge transfer in the bifunctional molecule 2-phenylethyl-N, N-dimethylamine using Rydberg fingerprint spectroscopy. The Journal of Physical Chemistry A 2005, 109 (9), 1920-1925.
    22. Sun, S.; Mignolet, B.; Fan, L.; Li, W.; Levine, R. D.; Remacle, F., Nuclear motion driven ultrafast photodissociative charge transfer of the penna cation: An experimental and computational study. The Journal of Physical Chemistry A 2017, 121 (7), 1442-1447.
    23. 楊博竣. 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研究. 國立清華大學, 新竹市, 2018.
    24. 宋桓宇. 氣相超快光游離誘發雙官能基陽離子內之電荷轉移動態學研究. 國立清華大學, 新竹市, 2019.
    25. Li, S.; Bernstien, E.; Seeman, J., Stable conformations of benzylamine and N, N-dimethylbenzylamine. The Journal of Physical Chemistry 1992, 96 (22), 8808-8813.
    26. Sun, S.; Bernstein, E., Spectroscopy of neurotransmitters and their clusters. 1. Evidence for five molecular conformers of phenethylamine in a supersonic jet expansion. Journal of the American Chemical Society 1996, 118 (21), 5086-5095.
    27. Im, H.-S.; Bernstein, E.; CHEMISTRY, C. S. U. F. C. D. O., Determination of the Minimum Energy Conformations of Benzyl Alcohol and 2-Phenethyl Alcohol. 1989.
    28. Law, K.; Bernstein, E., Molecular jet study of van der Waals complexes of flexible molecules: n‐Propyl benzene solvated by small alkanesa. The Journal of chemical physics 1985, 82 (7), 2856-2866.
    29. 呂柏昀. 以飛秒光游離-光裂解光譜法研究雙官能基陽離子電荷轉移動態學. 國立清華大學, 新竹市, 2022.
    30. 顏暐儒. 光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究. 國立清華大學, 新竹市, 2020.
    31. 紀泓瑋. 超快光游離誘發雙官能基陽離子之電荷轉移動態學研究. 國立清華大學, 新竹市, 2021.
    32. Walter, K.; Weinkauf, R.; Boesl, U.; Schlag, E., Spectroscopy of the benzene cation: Resonance-enhanced multiphoton dissociation spectra of the B̃ (E2g)← X̃ (E1g) transition. Chemical physics letters 1989, 155 (1), 8-14.
    33. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H., Wallingford Ct. Wallingford CT 2009.
    34. Chai, J.-D.; Head-Gordon, M., Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics 2008, 10 (44), 6615-6620.
    35. Burns, L. A.; Mayagoitia, Á. V.; Sumpter, B. G.; Sherrill, C. D., Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. The Journal of chemical physics 2011, 134 (8).
    36. Li, A.; Muddana, H. S.; Gilson, M. K., Quantum mechanical calculation of noncovalent interactions: a large-scale evaluation of PMx, DFT, and SAPT approaches. Journal of chemical theory and computation 2014, 10 (4), 1563-1575.
    37. Yanai, T.; Tew, D. P.; Handy, N. C., A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical physics letters 2004, 393 (1-3), 51-57.
    38. Amirav, A.; Even, U.; Jortner, J., Cooling of large and heavy molecules in seeded supersonic beams. Chemical Physics 1980, 51 (1-2), 31-42.

    QR CODE