研究生: |
蔡孟庭 Tsai, Meng-Ting |
---|---|
論文名稱: |
奈米碳管-聚丙烯腈-分子級逐層堆疊聚醯胺選擇層複合膜於正向滲透之應用 Carbon Nanotube-Polyacrylonitrile-Polyamide Thin-film Composite Membrane Fabricated via Molecular Layer-by-layer Method for the Application in Forward Osmosis |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: |
李紫原
Lee, Chi-Young 洪仁陽 Horng, Ren-Yang 林冠佑 Lin, Guan-You |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 奈米碳管 、聚丙烯腈 、分子級逐層堆疊法 、正向滲透 |
外文關鍵詞: | Carbon nanotube, Polyacrylonitrile, Molecular layer-by-layer method, Forward osmosis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在製備一具高通量與高阻鹽性之碳材料複合膜,並將其應用於正向滲透(Forward Osmosis, FO)分離程序,以期提供正滲透薄膜設計新概念。實驗首先探討分子級逐層堆疊法(Molecular layer-by layer, mLBL)的可行性,比較此方法與界面聚合法製備出的聚醯胺(Polyamide, PA)選擇層之形貌與FO效能差異。另一方面,實驗配置多壁奈米碳管混和漿料(Mixed MWCNT, mCNT),以塗佈方式在不織布上形成碳管層,並在其上塗佈聚丙烯腈(Polyacrylonitrile, PAN),形成碳管-聚丙烯腈(mCNT-PAN)複合基材膜,最後結合此複合基材膜與mLBL,完成碳複合膜製備。研究內容包含討論碳管層的導入對複合膜效能的影響,同時討論不同PAN塗佈厚度和不同不織布厚度與FO效能間的關係,並於不同提取液濃度下量測其性能。研究結果顯示,以mLBL方式成長PA層的複合膜,具有較平坦與較薄之特性,且FO效能優於界面聚合法形成之複合膜;而碳管層的導入,除了提升基材膜表面粗糙度外,更能讓基材膜呈現清楚的分層結構,有效減緩質傳阻力,提升碳複合膜之FO效能。其中以30 μm不織布搭配30 μm PAN塗佈厚度形成之碳複合膜具有最佳效能,在提取液為1M氯化鈉、進流液為去離子水的FO系統中,具有29.04 LMH的水通量與9.41 gMH的逆溶質擴散值的表現,說明本研究設計的碳複合膜在FO系統中應用深具潛力。
This work proposed a new concept to fabricate carbon materials-based forward osmosis thin-film composite (FO-TFC) membranes with high performance. The molecular layer-by-layer (mLBL) method was used to prepare polyamide (PA) selective layer and its performance was compared with the one formed by the interfacial polymerization (IP) method. On the other hand, mixed MWCNT (mCNT) slurry was fabricated and was cast on nonwoven fabric. Followed by the Polyacrylonitrile (PAN) casting process, mCNT-PAN composite substrate was formed, which was subjected to the mLBL method to obtain the carbon materials-based TFC membrane.
Results showed that PA formed by mLBL has better properties than PA formed by the IP method. Regarding the substrate, with mCNT inserted between nonwoven fabric and PAN, the substrate not only has higher surface roughness but also has a clear layer structure, which was effective in decreasing mass transport resistance and resulted in improving FO performance. The best FO properties were performed by the 30-mCNT-PAN30 substrate cooperated with the mLBL PA process, with water flux 29.04 LMH and reverse salt flux 9.41 gMH. It showed that this novel carbon materials-based TFC membrane has great potential in FO application.
[1] J. Mulder, Basic Principles of Membrane Technology, Springer Netherlands2012.
[2] Strathmann, H. "Membrane separation processes: current relevance and future opportunities." AIChE journal 47.5 (2001): 1077-1087.
[3] Shqau, Krenar, et al. "Preparation and Properties of Porous α‐Al2O3 Membrane Supports." Journal of the American Ceramic Society 89.6 (2006): 1790-1794
[4] Van Gestel, Tim, et al. "ZrO2 and TiO2 membranes for nanofiltration and pervaporation: Part 1. Preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO< 300." Journal of Membrane Science284.1-2 (2006): 128-136.
[5] Moss, T. S., et al. "Multilayer metal membranes for hydrogen separation." International Journal of Hydrogen Energy 23.2 (1998): 99-106.
[6] S.P. Tung, B.J. Hwang, Synthesis and characterization of hydrated phosphor-silicate glass membrane prepared by an accelerated sol-gel process with water/vapor management, Journal of Materials Chemistry 15 (2005) 3532-3538.
[7] Kesting, R. E. "Concerning the microstructure of dry‐RO membranes." Journal of applied polymer science 17.6 (1973): 1771-1785.
[8] Smolders, C. A., et al. "Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids." Journal of Membrane Science 73.2-3 (1992): 259-275.
[9] Kesting, Robert E. Synthetic polymeric membranes: a structural perspective. Vol. 348. NY etc.: Wiley, 1985.
[10] Matsuyama, Hideto, et al. "Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology." Journal of applied polymer science 74.1 (1999): 171-178.
[11] Khorshidi, Behnam, et al. "A novel approach toward fabrication of high performance thin film composite polyamide membranes." Scientific reports 6 (2016): 22069.
[12] Xu, Guo-Rong, et al. "Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes." Journal of Membrane Science 493 (2015): 428-443.
[13] Wanqin Jin , Ali Toutianoush, and Bernd Tieke. "Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes." Langmuir 19.7 (2003): 2550-2553.
[14] Johnson, Peter M., et al. "Molecular layer‐by‐layer deposition of highly crosslinked polyamide films." Journal of Polymer Science Part B: Polymer Physics50.3 (2012): 168-173.
[15] Kwon, Soon-Bum, et al. "Molecular layer-by-layer assembled forward osmosis membranes." Journal of Membrane Science 488 (2015): 111-120.
[16] Zhao, Shuaifei, et al. "Recent developments in forward osmosis: opportunities and challenges." Journal of membrane science 396 (2012): 1-21.
[17] ForwardOsmosisTech
http://www.forwardosmosistech.com/
[18] Achilli, Andrea, Tzahi Y. Cath, and Amy E. Childress. "Power generation with pressure retarded osmosis: An experimental and theoretical investigation." Journal of membrane science 343.1-2 (2009): 42-52.
[19] History of HTI, HTI Website, http://www.htiwater.com/company/hti_history.html.
[20] Cath, Tzahi Y., Amy E. Childress, and Menachem Elimelech. "Forward osmosis: principles, applications, and recent developments." Journal of membrane science 281.1-2 (2006): 70-87.
[21] Klaysom, Chalida, et al. "Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply." Chemical society reviews 42.16 (2013): 6959-6989.
[22] Choi, Yong-Jun, et al. "Toward a combined system of forward osmosis and reverse osmosis for seawater desalination." Desalination 247.1-3 (2009): 239-246.
[23] Tang, Wanling, and How Yong Ng. "Concentration of brine by forward osmosis: performance and influence of membrane structure." Desalination 224.1-3 (2008): 143-153.
[24] Loeb, Sidney, Fred Van Hessen, and Dinah Shahaf. "Production of energy from concentrated brines by pressure-retarded osmosis." Journal of Membrane Science 1 (1976): 49-63.
[25] Yip, Ngai Yin, et al. "Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients." Environmental science & technology 45.10 (2011): 4360-4369.
[26] Garcia-Castello, Esperanza M., Jeffrey R. McCutcheon, and Menachem Elimelech. "Performance evaluation of sucrose concentration using forward osmosis." Journal of membrane science 338.1-2 (2009): 61-66.
[27] Petrotos, Konstantinos B., and Harris N. Lazarides. "Osmotic concentration of liquid foods." Journal of Food Engineering 49.2-3 (2001): 201-206.
[28] Thombre, A. G., et al. "Asymmetric membrane capsules for osmotic drug delivery II. In vitro and in vivo drug release performance." Journal of controlled release 57.1 (1999): 65-73.
[29] Thombre, A. G., et al. "Asymmetric membrane capsules for osmotic drug delivery: I. Development of a manufacturing process." Journal of controlled release 57.1 (1999): 55-64.
[30] Wang, Rong, et al. "Characterization of novel forward osmosis hollow fiber membranes." Journal of membrane science 355.1-2 (2010): 158-167.
[31] Wei, Jing, et al. "Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes." Journal of Membrane Science 372.1-2 (2011): 292-302.
[32] Song, Xiaoxiao, Zhaoyang Liu, and Darren Delai Sun. "Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate." Advanced materials23.29 (2011): 3256-3260.
[33] Lee, K. L., R. W. Baker, and H. K. Lonsdale. "Membranes for power generation by pressure-retarded osmosis." Journal of Membrane Science 8.2 (1981): 141-171.
[34] Yip, Ngai Yin, et al. "High performance thin-film composite forward osmosis membrane." Environmental science & technology 44.10 (2010): 3812-3818.
[35] Darabi, Rezvaneh Ramezani, Mohsen Jahanshahi, and Majid Peyravi. "A support assisted by photocatalytic Fe3O4/ZnO nanocomposite for thin-film forward osmosis membrane." Chemical Engineering Research and Design 133 (2018): 11-25.
[36] Pan, Ye-Han, et al. "Thin film nanocomposite membranes based on imologite nanotubes blended substrates for forward osmosis desalination." Desalination 421 (2017): 160-168.
[37] Iijima, Sumio. "Helical microtubules of graphitic carbon." nature 354.6348 (1991): 56-58.
[38] Dresselhaus, M. S., G. Dresselhaus, and R. Saito. "Physics of carbon nanotubes." Carbon 33.7 (1995): 883-891.
[39] Tagmatarchis, Nikos, ed. Advances in carbon nanomaterials: Science and applications. CRC Press, 2012.
[40] Yu, Min-Feng, et al. "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties." Physical review letters 84.24 (2000): 5552-5555.
[41] Fujii, Motoo, et al. "Measuring the thermal conductivity of a single carbon nanotube." Physical review letters 95.6 (2005): 065502.
[42] "Press Release: The 1996 Nobel Prize in Chemistry". Nobelprize.org. Nobel Media AB 2014. Web. 11 Jul 2018. <http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/press.html>
[43] Che, Jianfei, Peng Chen, and Mary B. Chan-Park. "High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors." Journal of Materials Chemistry A1.12 (2013): 4057-4066.
[44] Wei, Y. Y., et al. "Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition." Applied Physics Letters 78.10 (2001): 1394-1396.
[45] Nerushev, O. A., et al. "Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition." Journal of applied physics 93.7 (2003): 4185-4190.
[46] 楊健鑫,以流動觸媒法合成單層奈米碳管及雙層奈米碳管之製程研究,碩士論文,國立清華大學材料科學工程學系,台灣新竹,2004。
[47] Okai, M., et al. "Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition." Applied Physics Letters 77.21 (2000): 3468-3470.
[48] Zhang, Jianwei, Dazhi Jiang, and Hua-Xin Peng. "A pressurized filtration technique for fabricating carbon nanotube buckypaper: Structure, mechanical and conductive properties." Microporous and Mesoporous Materials 184 (2014): 127-133.
[49] Rashid, Md Harun-Or, et al. "Synthesis, properties, water and solute permeability of MWNT buckypapers." Journal of Membrane Science 456 (2014): 175-184.
[50] Roy, Soumyendu, et al. "Formation of carbon nanotube bucky paper and feasibility study for filtration at the nano and molecular scale." The Journal of Physical Chemistry C 116.35 (2012): 19025-19031.
[51] Song, Xiangju, et al. "Nanocomposite Membrane with Different Carbon Nanotubes Location for Nanofiltration and Forward Osmosis Applications." ACS Sustainable Chemistry & Engineering 4.6 (2016): 2990-2997.
[52] Ahn, Chang Hoon, et al. "Carbon nanotube-based membranes: Fabrication and application to desalination." Journal of Industrial and Engineering Chemistry 18.5 (2012): 1551-1559.
[53] Tian, Miao, Yi-Ning Wang, and Rong Wang. "Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes." Desalination 370 (2015): 79-86.
[54] Amini, Maryam, Mohsen Jahanshahi, and Ahmad Rahimpour. "Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes." Journal of membrane science 435 (2013): 233-241.
[55] Dumée, Ludovic, et al. "Fabrication of thin film composite poly (amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems." Journal of membrane science 427 (2013): 422-430.
[56] Das, Rasel, et al. "Carbon nanotube membranes for water purification: a bright future in water desalination." Desalination 336 (2014): 97-109.
[57] Hinds, Bruce J., et al. "Aligned multiwalled carbon nanotube membranes." Science 303.5654 (2004): 62-65.
[58] Holt, Jason K., et al. "Fast mass transport through sub-2-nanometer carbon nanotubes." Science312.5776 (2006): 1034-1037.
[59] 汪建民, 材料分析, 中國材料科學學會 2005
[60] T. Young, An Essay on the Cohesion of Fluids, Philosophical Transactions of the Royal Society of London 95 (1805) 65-87
[61] Shen, Liang, Shu Xiong, and Yan Wang. "Graphene oxide incorporated thin-film composite membranes for forward osmosis applications." Chemical Engineering Science 143 (2016): 194-205.
[62] J. E. Gu, S. Lee, C. M. Stafford, J. S. Lee, W. Choi, B. Y. Kim, ... & J. H Lee. (2013). Molecular Layer‐by‐Layer Assembled Thin‐Film Composite Membranes for Water Desalination. Advanced Materials, 25(34), 4778-4782.
[63] Khorshidi, B., et al. "Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions." RSC Advances 5.68 (2015): 54985-54997.
[64] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Physical Review Letters 97 (2006).
[65] M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy, in: J.S. Langer (Ed.) Annual Review of Condensed Matter Physics, Vol 1 (2010), pp. 89-108.
[66] Zhang, Guojun, Hong Meng, and Shulan Ji. "Hydrolysis differences of polyacrylonitrile support membrane and its influences on polyacrylonitrile-based membrane performance." Desalination 242.1-3 (2009): 313-324.
[67] Gu, Joung-Eun, et al. "Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance." Applied Surface Science 356 (2015): 659-667.
[68] Emadzadeh, D., et al. "Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization." Journal of Membrane Science 449 (2014): 74-85.
[69] Alsvik, Inger Lise, and May-Britt Hägg. "Pressure retarded osmosis and forward osmosis membranes: materials and methods." Polymers 5.1 (2013): 303-327.
[70] Phillip, William A., Jui Shan Yong, and Menachem Elimelech. "Reverse draw solute permeation in forward osmosis: modeling and experiments." Environmental science & technology 44.13 (2010): 5170-5176.
[71] Zhou, Zongyao, et al. "High-Performance Thin-Film Composite Membrane with an Ultrathin Spray-Coated Carbon Nanotube Interlayer." Environmental Science & Technology Letters 5.5 (2018): 243-248.
[72] Li, Meng-Na, et al. "Forward osmosis membranes modified with laminar MoS 2 nanosheet to improve desalination performance and antifouling properties." Desalination 436 (2018): 107-113.
[73] Zhao, Xinzhen, Jing Li, and Changkun Liu. "A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance." Desalination 413 (2017): 176-183.
[74] Cath, Tzahi Y., et al. "Standard methodology for evaluating membrane performance in osmotically driven membrane processes." Desalination 312 (2013): 31-38.
[75] Ren, Jian, and Jeffrey R. McCutcheon. "A new commercial thin film composite membrane for forward osmosis." Desalination 343 (2014): 187-193.