簡易檢索 / 詳目顯示

研究生: 張淵哲
Chang, Yua-Che
論文名稱: 不規則形狀皮膚燒傷面積之ADT診斷法研究
Numerical study on the diagnostic method of active dynamic thermography for skin burn wounds of irregular shape
指導教授: 李雄略
口試委員: 張錦裕
陳志臣
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 46
中文關鍵詞: 皮膚燒燙傷動態紅外線熱成像法不規則形狀診斷
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究目的為發展三維不規則形狀之燒燙傷傷口,利用數值分析模擬動態紅外線熱成像(active dynamic thermography, ADT)於燒燙傷傷口之診斷。所建立三維燒傷皮膚模型中包含真皮層與表皮層,定義受傷傷口範圍(而其受傷傷口與一般皮膚的差別在於血管有沒有辦法提供熱量)接著使用鹵素燈照射表皮一段時間使皮膚表面溫度約上生2.5℃,在利用紅外線測溫儀去量測皮膚表面自然冷卻之溫度變化,並由得到的連續溫度變化去計算出本文用以判斷傷口位置之重要參數以判斷燒傷傷口範圍。
      在本文中定義了三種特別形狀之燒燙傷傷口,分別為正方形、三角形和不規則形狀,本研究發現在正方型和三角形的傷口中,判斷燒傷傷口位置時會對狹長的傷口處產生較大誤差,並在第三種不規則圖型中對本文之重要參數測試其找尋多個傷口時的可靠度為何,而結果發現所找尋到的受傷範圍跟原本定義範圍非常接近,故本研究結論提出利用ADT法可以準確找出任意人體燒燙傷傷口範圍。


    目錄 摘要 I 致謝 II 目錄 III 圖目錄 V 符號說明 VII 第一章 緒論 1 1.1 前言 1 1.2動態紅外線熱成像 2 1.3 生物熱傳導方程式 3 1.4 研究目的 5 第二章 三維皮膚燒傷模擬 6 2.1 問題描述 6 2.2 統御方程式 7 2.3 起始條件與邊界條件 8 2.4 無因次化 9 2.5 問題簡化 11 第三章 數值方法 14 3.1 網格系統 14 3.2 統御方程式之差分 14 3.3 邊界條件之差分 15 3.4 時間處理 17 3.5 計算流程 17 3.6 參數設定 18 3.7 收斂標準 19 第四章 結果與討論 20 第五章 結論 25 參考文獻 26

    參考文獻
    Baish JW, Ayyaswanty PS, Foster KR. Heat Transport Mechanism in
    Vascular Tissue: a Model Comparison. ASME J Biomech Eng
    1986;108: 324-31.
    Hedge A. Thermal Sensation and Thermoregulation, Lecture Notes,
    Cornell University:
    www.ergo.human.cornell.edu/studentdownloads/DEA350pdfs/thermreg.pdf.
    James L, Harris Sr. Constant Variance Enhancement. Appl Opt 1977;16:
    1268-71.
    Lee SL. A Strongly-Implicit Solver for Two-Dimensional Elliptic
    Differential Equations. Numer Heat Transfer 1989; 16: 161-78.
    Lee SL, Lu YH. Modeling of Bioheat Equation for Skin and a
    Preliminary Study on a Noninvasive Diagnostic Method for Skin Burn Wounds. 2012. Submitted for publication.
    Ng EYK, Tan HM, Ooi EH. Boundary Element Method with Bioheat
    Equation for Skin Burn Injury. Burns 2009; 35: 987-97.
    Pennes HH. Analysis of Tissue and Arterial Blood Temperatures in the
    Resting Human Forearm. J Appl Physiol 1947;1:pp.93-122.
    Ruminski J, Kaczmarek M, Renkielska A, Nowakowski A. Thermal
    Parametric Imagine in the Evaluation of Skin Burn Depth. IEEE Trans Biomech Eng 2007;54 :303-12.
    Renkielska A, Nowakowski A, Kaczmarek M, Dobke MK, Grudzinski J,
    Karmolinski A, et al. Static Thermography Revisited—An Adjunct Method for Determining the Depth of the Burn Injury. Burns 2005;31:768–75.
    Renkielska A, Nowakowski A, Kaczmarek M, Ruminski J. Burn Depths
    Evaluation based on Active Dynamic IR Thermal Imaging—A Preliminary Study. Burns 2006;32:867-75.
    Singer AJ, Berruti L, Thode HC, McClain SA. Standardized Burn Model
    using a Multiparametric Histologic Analysis of Burn Depth. Acad Emerg Med 2000;7:1-6.
    Sami K, Firas H. A Modified Approximation of 2D Gaussian Smoothing
    Filters for Fixed-Point Platforms. IEEE 2011;11:154-59.
    Torvi DA, Dale JD. A Finite Element Model of Skin subjected to a Flash
    Fire. ASME J Biomech Eng1994;116:250-5.
    Terese Winslow. Skin Anatomy. 2008.
    www.visualsonline.cancer.gov
    Wissler EH. Comments on the New Bioheat Equation proposed by
    Weinbaum and Jiji. ASME J Biomech Eng 1987;109: 226-32.
    Weinbaum S, Jiji LM. A New Simplified Bioheat Equation for the Effect
    of Blood Flow on Local Average Tissue Temperature, ASME J Biomech Eng 1987;107:131-9.
    Weinbaum S, Xu LX, Zhu L, Ekpene A. A New Fundamental Bioheat
    Equation for Muscle Tissue:Part I-Blood Perfusion Term. ASME J Biomech Eng 1997;119:278-88.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE