簡易檢索 / 詳目顯示

研究生: 呂培煒
Lu, Pei-Wei
論文名稱: 應用於鑽石鍍膜之電容式電漿輔助化學氣相沉積之甲烷/氫氣電漿數值模擬
Numerical analysis on the methane/hydrogen plasma in a capacity-coupled PECVD reactor applied for diamond deposition
指導教授: 王訓忠
Wong, Shwin-Chung
口試委員: 柳克強
Leuo, Keh-Chyang
蔡宏營
Tsai, Hung-Yin
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 56
中文關鍵詞: 電漿數值模擬鑽石鍍膜
外文關鍵詞: plasma, simulation, diamond deposition
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用商用軟體CFD-ACE+,以流體模型模擬電容耦合式電漿輔助化學氣相沉積法沉積鑽石薄膜。基於簡化分析,腔體溫度設為等溫;模擬中不考慮成長薄膜之表面反應,僅以吸附係數(sticking coefficient)定義物種撞擊壁面之通量;且假設一旦正離子撞擊壁面,即形成中性粒子返回至腔體。
      首先,將本研究之數值結果與文獻比對,以確定本數值分析的可靠性。採用之化學反應方程組為根據不同文獻資料並加以改良,此過程根據腔體內電漿放電特性,觀察電子密度、電子溫度、各粒子密度等參數在反應室中的分佈,並且針對沉積薄膜的主要粒子:CH3、CH2、H的生成與消耗,做化學反應式之影響性分析,計算的化學反應式。接續探討不同進氣位置與不同通入CH4/H2比例的影響,發現當氣體由反應式兩旁通入時,氣體主要以擴散的方式流動至基板表面,流動速度慢,在基板上方滯留時間長,有較足夠的時間可以將甲烷分解,因此基板上方CH3密度較高;且在通入甲烷 20 sccm且氫氣 80 sccm的操作環境下,CH3在徑向上的分佈均勻,基板上方的H密度最高,預期能有較均勻的薄膜沉積,且能有效的形成sp3的鍵結而獲得較佳品質的鑽石沉積薄膜。最後,分析不同腔體溫度(300K、400K、500K)對反應室內各物種濃度的影響,發現隨著溫度升高,物種濃度有明顯的下降,因此認為腔體溫度效應不宜忽略。


      In this study, we use fluid model to simulate capacity coupled plasma enhance chemical vapor deposition using in diamond deposition with CFD-ACE+. In order to simplify the simulation, we use sticking coefficient to define the species flux to the boundary and do not consider the surface reaction when growing film. Also, we assume that when ions strike to the wall, they will absorb electrons from the wall and reflect to the chamber as neutral particles.
      First, we compare our result with data in the literature for reliability confirmation. The reaction mechanism is determined by modifying the reaction mechanisms available in the literature. With the distributions of electron density, electron temperature, species number density in the reactor are analyzed for pure CH4 under a fixed temperature of 300 K and pressure of 300 mtorr, the most influential reactions to the generation and consumption of CH3, CH2 and H, the most influential species in diamond growth, are identified. Subsequently, the effects of different inlet arrangements and inlet CH4/H2 mixtures. When the inlet is located on the outer rim of the upper surface, slightly higher CH3 concentration is obtained above the substrate. This is because the transport process is mainly by diffusion, so that there is longer species residence time above the substrate when the gas flow enters through the outer rim. When the mixture is 20 sccm CH4 with 80 sccm H2, there can be uniform CH3 distribution with high H density above substrate so that uniform and good-quality diamond film deposition may be expected. Furthermore, analyses for different chamber temperatures (300 K, 400 K, and 500 K) reflected different chemical compositions due to the temperature effect.

    目錄 摘要 I Abstract II 表目錄 V 圖目錄 VI 第一章 簡介 9 1.1研究背景 9 1.2基本原理 2 1.3文獻回顧 5 1.3.1數值方法 5 1.3.2表面模型 11 1.3.3參數分析 15 1.3.4研究方向 19 第二章 數值方法 19 2.1幾何結構 19 2.2數值模型 20 2.3邊界條件 23 2.4初始條件 26 2.5化學反應 26 2.6軟體簡介 27 2.7網格測試 27 第三章 結果與討論 29 3.1文獻結果比較 29 3.2溫度的影響 30 3.3化學反應機制比較 31 3.4電漿放電特性 37 3.5化學反應式影響之分析 39 3.6一個電壓週期內的變化 43 3.7流場的影響 46 3.8不同CH4/H2比例的影響 50 第四章 結論 53 參考文獻 54

    參考文獻
    [1]鈴木秀人,池永勝,DLC成膜技術,全華科技圖書股份有限公司,台北,2005
    [2]林明達,加強型電容耦合式高密度電漿在非晶矽薄膜電晶體蝕刻研究,國立中興大學碩士論文
    [3] J. D. P. Passchier, W. J. Goedheer, A two‐dimensional fluid model for an argon RF discharge, J. Appl. Phys. 74 (1993) 3744-3751.
    [4]古馥瑋,電容式耦合矽烷/氫氣電漿模擬研究—物理化學機制與操作參數關聯性之分析與探討,國立清華大學碩士論文
    [5]陳崑約,以二維流體模型模擬分析電感耦合式電漿源之電漿特性均勻度之研究,國立清華大學碩士論文
    [6] I. B. Denysenko, S. Xu, J. D. Long, P. P. Rutkevych, N. A. Azarenkov, and K. Ostrikov, Inductively coupled Ar/CH4/H2 plasmas for low-temperature deposition of ordered carbon nanostructures, J. Appl. Phys. 95 (2004) 2713-2724.
    [7] H.Yamada, A.Chayahara, Y.Mokuno, Simplified description of microwave plasma discharge for chemical vapor deposition of diamond, J. Appl. Phys. 101 (2007) 063302.
    [8] G. Shivkumar, S. S. Tholeti, M. A. Alrefae, T. S. Fisher, and A. A. Alexeenko, Analysis of hydrogen plasma in a microwave plasma chemical vapor deposition reactor, J. Appl. Phys. 119 (2016) 113301.
    [9] H. Yamada, A. Chayahara, Y. Mokuno, Y. Horino, S. Shikata, Simulation of microwave plasmas concentrated on the top surface of a diamond substrate with finite thickness, Diamond and Related Materials 15 (2006) 1383.
    [10] E.Neyts, M Yan, A Bogaerts, R.Gijbels, Particle-in-cell/Monte Carlo simulations of a low-pressure capacitively coupled radio-frequency discharge: effect of adding H2 to an Ar discharge, J. Appl. Phys. 93 (2003) 5025-5033.
    [11] E. Gogolides, D. Mary, A. Rhallabi, G. Turban, RF plasma in methane: Prediction of plasma properties and neutral radical densities with gas-phase physics and chemistry model, J. Appl. Phys. Part 1 34 (1995) 261.
    [12] D. Herrebout, A. Bogaerts, M. Yan, R. Gijbels, W. Goedheer, A. Vanhulsel, Modeling of a capacitively coupled radio-frequency methane plasma: Comparison between a one-dimensional and a two-dimensional fluid model, J. Appl. Phys. 92 (2002) 2290.
    [13] D. Herrebout, A. Bogaerts, M. Yan, R. Gijbels, W. Goedheer, E. Dekempeneer, One-dimensional fluid model for an Rf methane plasma of interest in deposition of diamond-like carbon layers, J. Appl. Phys. 90 (2001) 570.
    [14] K. Bera, B. Farouk, Y.H. Lee, Simulation of thin carbon film deposition in a radio-frequency methane plasma reactor, J. Electrochem. Soc. 146 (1999) 3264.
    [15] V. Ivanov, O. Proshina, T. Rakhimova, A. Rakhimov, D. Herrebout, A.Bogaerts, Comparison of a one-dimensional particle-in-cell–Monte Carlo model and a one-dimensional fluid model for a CH4/H2 capacitively coupled radio frequency discharge, J. Appl. Phys. 91 (2002) 6296-6302.
    [16] N.V. Mantzaris, E. Gogolides, A.G. Boudouvis, A. Rhallabi, G. Turban, Surface and plasma
    simulation of deposition processes: CH4plasmas for the growth of diamondlike carbon. J. Appl. Phys. 79 (1996) 3718.
    [17] Y.A. Mankelevich, P.W. May, New insights into the mechanism of CVD diamond growth: Single crystal diamond in MW PECVD reactors, Diamond Relat. Mater. 17 (2008) 1021.
    [18] P.W. May, Y.A. Mankelevich, From ultrananocrystalline diamond to single crystal diamond growth in hot filament and microwave plasma-enhanced CVD reactors: a unified model for growth rates and grain sizes, J. Phys. Chem. C 112 (2008) 12432.
    [19] K. Tachibana, M. Nishida, H. Harima, Y. Urano, Diagnostics and modelling of a methane plasma used in the chemical vapour deposition of amorphous carbon films, J. Appl. Phys. 17 (1984).
    [20] S.N. Foner, Mass spectrometry of free radicals, Advances in Atomic and Molecular Physics 2, (1966) 385-461.
    [21] K. Bera, B. Farouk, Y.H. Lee, Effects of reactor pressure on two-dimensional radio-frequency methane plasma: a numerical Study, Plasma Sources Sci. Technol. 8 (1999) 412.
    [22] H. Sugai, H. Kojima, A Ishida, H. Toyoda, Spatial distribution of CH3 and CH2 radicals in a methane Rf discharge, Applied Physics Letters 56 (1990) 2616-2618.
    [23] M. A. Lieberman, A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. John Wiley & Sons, 2005.
    [24] A.V. Keudell, and W. Möller, A combined plasma‐surface model for the deposition of C: H films from a methane plasma, J. Appl. Phys. 75 (1994) 7718-7727.
    [25] LXCat, http://fr.lxcat.net
    [26] H. Sugai, and H. Toyoda, Appearance mass spectrometry of neutral radicals in radio frequency plasmas, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10 (1992) 1193-1200.
    [27]陳月玉,冷電漿沉積類鑽碳膜之製程模擬分析,國立中央大學碩士論文
    [28] D.A. Alman, D.N. Ruzic, J.N. Brooks, A hydrocarbon reaction model for low temperature hydrogen plasmas and an application to the Joint European Torus, Physics of Plasmas 7 (2000) 1421-1432.
    [29] N. Mutsukura, S.I. Inoue, and Y. Machi, Deposition mechanism of hydrogenated hard‐carbon films in a CH4 RF discharge plasma, J. Appl. Phys. 72 (1992) 43-53.
    [30]羅吉宗,薄膜科技與應用,全華科技圖書股份有限公司,台北,2004.

    QR CODE