研究生: |
蔡宗樺 Tsai, Tzung-Hua |
---|---|
論文名稱: |
高速室內毫米波通訊之混合式波束成形設計 Hybrid Beamforming Design for High-Speed Indoor mmWave Systems |
指導教授: |
趙啟超
Chao, Chi-Chao |
口試委員: |
蘇育德
Su, Yu-Ted 邱茂清 Chiu, Mao-Ching 鍾偉和 Chung, Wei-ho 伍紹勳 Wu, Sau-Hsuan 李大嵩 Lee, Ta-Sung |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | 毫米波 、混合式波束成形 |
外文關鍵詞: | mmWave, hybrid beamforming |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此博士論文中,我們研究在多重輸入多重輸出(Multiple-Input Multiple-Output, MIMO)正交分頻多工(Orthogonal Frequency-Division Multiplexing, OFDM)系統上基於室內毫米波通道(Millimeter Wave, mmWave)的混合式波束形成(Hybrid Beamforming)設計。在考慮混合式波束形成於多載波系統 (Multi-Carrier System)的實際硬體限制之下,我們提出子系統奇異值分解 (Sub-System SVD)混合式波束形成演算法。此方法不但擁有良好的系統效能,也具備較低的運算複雜度。為了進一步減少通道估計(Channel Estimation)的系統複雜度,在此論文中我們也討論如何降低波束形成演算法所需要的通道狀態訊息(Channel State Information, CSI)總量。基於室內毫米波通道的統計特性,我們有效降低子系統奇異值分解演算法所需求的通道狀態訊息量。此外,我們也將子系統奇異值分解演算法延伸至有限回饋(Limited Feedback)的系統架構上。在考量有限回饋的系統中,接收端只能回饋有限的訊息給傳送端,因此傳送端只能根據有限的訊息回饋進行波束成形設計。基於有限回饋的架構, 我們提出有限回饋子系統奇異值分解(Limited Feedback Sub-System SVD, LSS) 演算法。此演算法包含三個部分:第一個部分是由化簡子系統奇異值分解演算 法所產生的類比預編碼器(Analog Precoder)編碼簿(Codebook)設計、第二個部分是由羅依類型(Lloyd-Type)演算法所獲得的數位預編碼器(Digital Precoder)編碼簿設計、第三個部分則是大幅提升碼字(Codeword)搜尋速度的低複雜度碼字篩選演算法。最後,我們討論子系統奇異值分解演算法與有限回饋子系統奇異值分解演算法在現實系統缺陷中的穩健性。我們考量的現實系統缺陷包含三種效應:量化的類比波束形成器(Beamformer)、有瑕疵的通道狀態訊息、和低解析度(Low-Resolution)類比數位轉換器(Analog-to-Digital Converter)。藉由電腦模擬,我們發現子系統奇異值分解演算法不但趨近傳統全數位(Full-Digital)波束形成演算法的效能,還具備了低運算複雜度。在有限回饋的系統中,有限回饋子系統奇異值分解演算法則提供了比以往的演算法 更好的系統效能。此外,當通道狀態訊息總量被大幅降低時,我們所提出的演 算法都保有不錯的系統效能。在現實系統缺陷效應下,我們所提出的演算法也都維持很好的表現,且在較低的量化位元(Quantization Bit)下就可以達到飽和的系統效能。
In this dissertation, the hybrid beamforming design for multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems is studied over the indoor millimeter wave (mmWave) channels. Under practical hybrid beamforming constraints for multi-carrier systems and the study of sub-systems, we propose the sub-system SVD (SS) hybrid beamforming design which provides good performance with low complexity. To alleviate the complexity problem of channel estimation, reduction of the amount of required channel state information (CSI) is also studied based on the statistical properties of indoor mmWave channels. The SS hybrid beamforming algorithm is then extended to the limited feedback scheme in which the transmit beamformers are designed based on limited information fed back from the receiver. The limited feedback sub-system SVD (LSS) algorithm is proposed, which includes three parts: the simplified SS algorithm for the the analog precoder codebook design, the Lloyd-type algorithm for the digital precoder codebook design, and a low-complexity codeword selection algorithm to reduce the search complexity. The impact of imperfect system effects, including the quantized analog beamformer, imperfect CSI, and low-resolution analog-to-digital converter, is also examined. Simulation results show that our SS algorithm achieves the performance level of traditional full-digital beamforming with low complexity and the LSS algorithm has good performance even if the amount of CSI is greatly reduced. Under imperfect system effects, we also demonstrate that the proposed algorithms maintain good results and require less quantization bits to achieve saturated performance.
[1] N. Guo, R. C. Qiu, S. S. Mo, and K. Takahashi, “60-GHz millimeter-wave radio: Prin- ciple, technology, and new results,” EURASIP J. Wireless Commun. and Networking, vol. 2007, no. 1, pp. 1–8, Jan. 2007.
[2] S.-K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges,” EURASIP J. Wireless Commun. and Networking, vol. 2007, no. 1, pp. 50–50, Jan. 2007.
[3] R. C. Daniels and R. W. Heath, Jr., “60 GHz wireless communications: Emerging requirements and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41–50, Sep. 2007.
[4] A. L. Swindlehurst, E. Ayanoglu, P. Heydari, and F. Capolino, “Millimeter-wave massive MIMO: The next wireless revolution?” IEEE Commun. Mag., vol. 52, no. 9, pp. 56–62, Sep. 2014.
[5] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communica- tions: Theoretical feasibility and prototype results,” IEEE Commun. Mag., vol. 52, no. 2, pp. 106–113, Feb. 2014.
[6] R. W. Heath, Jr., N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436–453, Apr. 2016.
[7] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr., “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
[8] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, Jr., “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.
[9] A. Alkhateeb, G. Leus, and R. W. Heath, Jr., “Limited feedback hybrid precoding for multi-user millimeter wave systems,” IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.
[10] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 501–513, Apr. 2016.
[11] X. Yu, J. C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485–500, Apr. 2016.
[12] J. Singh and S. Ramakrishna, “On the feasibility of codebook-based beamforming in millimeter wave systems with multiple antenna arrays,” IEEE Trans. Wireless Com- mun., vol. 14, no. 5, pp. 2670–2683, May 2015.
[13] C. Lin and G. Y. Li, “Energy-e cient design of indoor mmWave and sub-THz systems with antenna arrays,” IEEE Trans. Wireless Commun., vol. 15, no. 7, pp. 4660–4672, Jul. 2016.
[14] J. Li, L. Xiao, X. Xu, and S. Zhou, “Robust and low complexity hybrid beamforming for uplink multiuser mmWave MIMO systems,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1140–1143, Jun. 2016.
[15] S. Park, J. Park, A. Yazdan, and R. W. Heath, Jr., “Exploiting spatial channel covari- ance for hybrid precoding in massive MIMO systems,” IEEE Trans. Signal Process., vol. 65, no. 14, pp. 3818–3832, Jul. 2017.
[16] Z. Xiao, P. Xia, and X. Xia, “Codebook design for millimeter-wave channel estimation with hybrid precoding structure,” IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 141–153, Jan. 2017.
[17] M. Iwanow, N. Vucic, M. H. Castaneda, J. Luo, W. Xu, and W. Utschick, “Some aspects on hybrid wideband transceiver design for mmWave communication systems,” in Proc. Int. ITG Workshop Smart Antennas, Munich, Germany, Mar. 2016, pp. 1–8.
[18] S. Park and R. W. Heath, Jr., “Frequency selective hybrid precoding in millimeter wave OFDMA systems,” in Proc. IEEE Global Commun. Conf., San Diego, CA, Dec. 2015, pp. 1–6.
[19] A. Alkhateeb and R. W. Heath, Jr., “Frequency selective hybrid precoding for limited feedback millimeter wave systems,” IEEE Trans. Commun., vol. 64, no. 5, pp. 1801– 1818, May 2016.
[20] S. Park, A. Alkhateeb, and R. W. Heath, Jr., “Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2907–2920, May 2017.
[21] Z. Xiao, T. He, P. Xia, and X. Xia, “Hierarchical codebook design for beamforming training in millimeter-wave communication,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3380–3392, May 2016.
[22] T. E. Bogale, L. B. Le, A. Haghighat, and L. Vandendorpe, “On the number of RF chains and phase shifters, and scheduling design with hybrid analog-digital beamforming,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3311–3326, May 2016.
[23] Z. Wang, M. Li, Q. Liu, and A. L. Swindlehurst, “Hybrid precoder and combiner design with low-resolution phase shifters in mmWave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 256–269, May 2018.
[24] P. Raviteja, Y. Hong, and E. Viterbo, “Millimeter wave analog beamforming with low resolution phase shifters for multiuser uplink,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3205–3215, Apr. 2018.
[25] A. D. Dabbagh and D. J. Love, “Multiple antenna MMSE based downlink precoding with quantized feedback or channel mismatch,” IEEE Trans. Commun., vol. 56, no. 11, pp. 1859–1868, Nov. 2008.
[26] N. Lee, O. Simeone, and J. Kang, “The e↵ect of imperfect channel knowledge on a MIMO system with interference,” IEEE Trans. Commun., vol. 60, no. 8, pp. 2221– 2229, Aug. 2012.
[27] T. X. Tran and K. C. Teh, “Spectral and energy e ciency analysis for SLNR precod- ing in massive MIMO systems with imperfect CSI,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4017–4027, Jun. 2018.
[28] S. Silva, G. A. A. Baduge, M. Ardakani, and C. Tellambura, “Performance analysis of massive MIMO two-way relay networks with pilot contamination, imperfect CSI, and antenna correlation,” IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 4831–4842, Jun. 2018.
[29] R. Peng and Y. Tian, “Robust wide-beam analog beamforming with inaccurate channel angular information,” IEEE Commun. Lett., vol. 22, no. 3, pp. 638–641, Mar. 2018.
[30] C. Studer and G. Durisi, “Quantized massive MU-MIMO-OFDM uplink,” IEEE Trans. Commun., vol. 64, no. 6, pp. 2387–2399, Jun. 2016.
[31] C. Mollen, J. Choi, E. G. Larsson, and R. W. Heath, Jr., “Uplink performance of wideband massive MIMO with one-bit ADCs,” IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 87–100, Jan. 2017.
[32] J. Mo, A. Alkhateeb, S. Abu-Surra, and R. W. Heath, Jr., “Hybrid architectures with few-bit ADC receivers: Achievable rates and energy-rate tradeo↵s,” IEEE Trans. Wire- less Commun., vol. 16, no. 4, pp. 2274–2287, Apr. 2017.
[33] W. B. Abbas, F. Gomez-Cuba, and M. Zorzi, “Millimeter wave receiver e ciency: A comprehensive comparison of beamforming schemes with low resolution ADCs,” IEEE Trans. Wireless Commun., vol. 16, no. 12, pp. 8131–8146, Dec. 2017.
[34] K. Roth, H. Pirzadeh, A. L. Swindlehurst, and J. A. Nossek, “A comparison of hybrid beamforming and digital beamforming with low-resolution ADCs for multiple users and imperfect CSI,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 3, pp. 484–498, Jun. 2018.
[35] S.-K. Yong, et al., “TG3c channel modeling sub-committee final report,” IEEE doc.:IEEE 802.15-07-0584-01-003c, Sep. 2010.
[36] S. Yoon, T. Jeon, and W. Lee, “Hybrid beam-forming and beam-switching for OFDM based wireless personal area networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1425–1432, Oct. 2009.
[37] P. F. M. Smulders and A. G. Wagemans, “Wideband indoor radio propagation mea- surements at 58 GHz,” Electron. Lett., vol. 28, no. 13, pp. 1270–1272, Jun. 1992.
[38] F. Giannetti, M. Luise, and R. Reggiannini, “Mobile and personal communications in the 60 GHz band: A survey,” Wireless Personal Commun., vol. 10, no. 2, pp. 207–243, Jul. 1999.
[39] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP Mag., vol. 5, no. 2, pp. 4–24, Apr. 1988.
[40] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2599–2613, Oct. 2002.
[41] ——, “Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1673–1690, Jul. 2003.
[42] J. Wang, Z. Lan, C.-S. Sum, C.-W. Pyo, J. Gao, T. Baykas, A. Rahman, R. Funada, F. Kojima, I. Lakkis, H. Harada, and S. Kato, “Beamforming codebook design and performance evaluation for 60GHz wideband WPANs,” in Proc. IEEE Veh. Tech. Conf., Anchorage, AK, Sep. 2009, pp. 1–6.
[43] Z. Liu, W. ur Rehman, X. Xu, and X. Tao, “Minimize beam squint solutions for 60GHz millimeter-wave communication system,” in Proc. IEEE Veh. Tech. Conf., Las Vegas, NV, Sep. 2013, pp. 1–5.
[44] A. Alkhateeb, R. W. Heath, Jr., and G. Leus, “Achievable rates of multi-user millimeter wave systems with hybrid precoding,” in Proc. IEEE Int. Conf. Commun. Workshop, London, UK, Jun. 2015, pp. 1232–1237.
[45] B. N. Bharath and C. R. Murthy, “Channel training signal design for reciprocal multiple antenna systems with beamforming,” IEEE Trans. Veh. Technol., vol. 62, no. 1, pp. 140–151, Jan. 2013.
[46] P. Bello, “Characterization of randomly time-variant linear channels,” IEEE T. Com- mun. Syst., vol. 11, no. 4, pp. 360–393, Dec. 1963.
[47] “IEEE standard for information technology - Telecommunications and information ex- change between systems - Local and metropolitan area networks - Specific require- ments. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs) amendment 2: Millimeter-wave-based alternative physical layer extension,” IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003), pp. c1–187, Oct. 2009.
[48] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.
[49] R. A. Pitaval and O. Tirkkonen, “Joint Grassmann-Stiefel quantization for MIMO prod- uct codebooks,” IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 210–222, Jan. 2014.
[50] B. Murmann, “ADC performance survey 1997-2018,” 2018. [Online]. Available: http://www.stanford.edu/⇠murmann/adcsurvey.html
[51] J. Singh, O. Dabeer, and U. Madhow, “On the limits of communication with low- precision analog-to-digital conversion at the receiver,” IEEE Trans. Commun., vol. 57, no. 12, pp. 3629–3639, Dec. 2009.
[52] A. K. Fletcher, S. Rangan, V. K. Goyal, and K. Ramchandran, “Robust predictive quantization: Analysis and design via convex optimization,” IEEE J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 618–632, Dec. 2007.