研究生: |
黃嘉輝 Chia-Hwe Huang |
---|---|
論文名稱: |
利用電鍍法製作熱電能源產生器 Thermoelectric Power Generator Fabricated by Electroplate Process |
指導教授: |
饒達仁
Da-Jeng Yao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 熱電能源產生器 、電鍍 、微機電製程 |
外文關鍵詞: | Thermoelectric Power Generator, Electroplate, MEMS |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於利用電鍍法做出熱電結構,共分理論、模擬與實驗三大架構,理論主要在設計熱電接腳高度為何時,其輸出電流與功率與效能會有最佳的值,以期找到最佳化設計;模擬方面,主要利用套裝軟體Ansys 9.0來預測其結果與理論之關係,目前由理論與模擬均呈現當熱電接腳高度為150μm時,擁有最佳之電流值,而當高度為300μm時,擁有最佳之輸出功率值,因此我們可知當接腳高度為150~300μm之間,其擁有的電流與功率將會是最佳設計;最後在實驗部分,將利用微機電技術將欲電鍍的接腳圖案定義出來,再利用電鍍法做出熱電接腳,最後將其N、P type結合一起,即做出熱電能源產生器。
一般如要製作出數百微米的電鍍物,都是採用LIGA技術,即利用同步輻射X光來進行深光刻術,製程上的成本相當的高。而本研究成功開發出一新製程,只要在一般黃光微影製程中,就可做出數百微米的光阻犧牲層,並於電鍍後將犧牲層去除,就可製作出數百微米的電鍍物。製程上,成功做出高度約100~120μm的SU8、Ti與AZ 9260所組成的犧牲層,並於顯影、蝕刻以及電鍍後,再利用丙酮來Lift-off犧牲層並順利將電鍍物裸露出來。成品上,設計直徑為500μm的熱電接腳,熱電材料選用電鍍法作出的銅與鎳,電鍍高度為100~120μm,而當兩電鍍物要進行Bonding時,成功利用異方性導電膠膜(ACF)與Flip chip bonder機台將N、P型試片結合在一起,並於最後使用電化學分析儀進行TEG的性能量測。
實驗上因為銅與鎳均不是很好的熱電材料,因此可預期其性能不會很好,經使用電化學分析儀量測出試片的電流值一對約在 安培之間,而輸出功率也非常之低,約在 瓦左右。而本研究的貢獻在於成功開發出一套新製程,使得在一般黃光微影製程中就可做出數百微米的電鍍物,可以大大減低製作成本,而往後如要製作出高性能的熱電能源產生器(TEG),將可應用此製程方法,並於電鍍時選用出好的熱電材料(例如 ),則可預期性能將會大大提升,同時也相信未來在熱電能源產生器其優點:體積小、堅固、無移動、使用壽命長、 可靠度高、環保等之下,也將會有其高應用價值存在。
1. 黃秉鈞, 科學發展. 2005年2月 386期.
2. Min, G.R., DM, Optimisation of thermoelectric module geometry for 'waste heat' electric power generation Power Sources, 1992. 38: p. 253-259.
3. Rowe, D.M. Development of improved modules for the economic recovery of low temperature waste heat. in Thermoelectrics, 1997. Proceedings ICT '97. XVI International Conference on. 1997.
4. Rowe, D.M. and G. Min, Evaluation of thermoelectric modules for power generation. Journal of Power Sources, 1998. 73(2): p. 193-198.
5. Rowe, D.M. and G. Min, Design theory of thermoelectric modules for electrical power generation. Science, Measurement and Technology, IEE Proceedings -, 1996. 143(6): p. 351-356.
6. Omer, S.A. and D.G. Infield, Design optimization of thermoelectric devices for solar power generation. Solar Energy Materials and Solar Cells, 1998. 53(1-2): p. 67-82.
7. Kishi, M., et al. Micro thermoelectric modules and their application to wristwatches as an energy source. in Thermoelectrics, 1999. Eighteenth International Conference on. 1999.
8. Leonov, V., et al. Thermoelectric MEMS generators as a power supply for a body area network. in Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on. 2005.
9. Strasser, M., et al., Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining. Sensors and Actuators A: Physical, 2002. 97-98: p. 535-542.
10. Duggirala, R., et al. MEMS Radioisotope-Powered Piezoelectric μ-power Generator (RPG) in Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul. 19th IEEE International Conference on. 2006.
11. Glatz, W. and C. Hierold. Flexible micro thermoelectric generator. in Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on. 2007.
12. Rowe, D.M., Thermoelectrics handbook :macro to nano. 2006.
13. Marotta, E.E. and L.S.F., Thermal contact conductance of refractory ceramic coatings. Thermophysics and Heat Transfer, 1996. 10(1): p. 0887-8722.
14. 廖柏瑞碩士論文, 濺鍍製程參數對BiTe複合熱電薄膜影響之研究: 國立清華大學材料科學工程研究所(2005).
15. Myung Jin, Y., H. Jinsang, and P. Kyung Wook. Anisotropic conductive films (ACFs) for ultra-fine pitch chip-on-glass (COG) applications. in Advanced Packaging Materials: Processes, Properties and Interfaces, 2005. Proceedings. International Symposium on. 2005.
16. Yim, M.J., C.K. Chung, and K.W. Paik, Effect of Conductive Particle Properties on the Reliability of Anisotropic Conductive Film for Chip-on-Glass Applications. Electronics Packaging Manufacturing, IEEE Transactions on, 2007. 30(4): p. 306-312.
17. Antonova, E.E. and D.C. Looman. Finite elements for thermoelectric device analysis in ANSYS. in Thermoelectrics, 2005. ICT 2005. 24th International Conference on. 2005.
18. Asahi, R., et al. High-temperature thermoelectric power generation module of layered oxides improved by multistage structure with Bi-Te module in Thermoelectrics, 2005. ICT 2005. 24th International Conference on. 2005.
19. Baglio, S., et al. Photo-thermoelectric power generation for autonomous microsystems. in Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on. 2003.
20. Kurosaki, J.-i., et al., The development of the micro-generator on the substrate based thin film, in Micro/Nanoscale Heat Transfer. 2008.
21. Lau, P.G. and R.J. Buist. Calculation of thermoelectric power generation performance using finite element analysis. in Thermoelectrics, 1997. Proceedings ICT '97. XVI International Conference on. 1997.
22. Marotta, E.E., D.G. Blanchard, and L.S. Fletcher, Thermal Contact Conductance of Diamond-Like Films. Thermophysics Heat Transfer, 1996. 10(1).
23. Ono, Y., et al. Fabrication and performance of an oxide thermoelectric power generator. in Thermoelectrics, 2002. Proceedings ICT '02. Twenty-First International Conference on. 2002.
24. Ota, T., et al. Development of Thermoelectric Power Generation System for Industrial Furnaces. in Thermoelectrics, 2006. ICT '06. 25th International Conference on. 2006.
25. Sakakibara, T., et al., Multi-source power supply system using micro-photovoltaic devices combined with microwave antenna. Sensors and Actuators A: Physical, 2002. 95(2-3): p. 208-211.
26. 陳怡君碩士論文, 熱電致冷元件模擬分析暨操作條件最佳化之研究: 國立清華大學奈米工程與微系統研究所(2006).
27. 黃建元碩士論文, 異方性導電膜在覆晶軟膜接合技術之機械性質與可靠度測試之研究: 國立清華大學動力機械工程所(2006).