簡易檢索 / 詳目顯示

研究生: 簡靖航
Chien, Ching-Hang
論文名稱: 共振腔下光致激發光譜與格林函數之應用
Modeling of Photoluminescence spectra for micro cavities via Green’s function method
指導教授: 張亞中
Chang, Yia-Chung
李志浩
Lee, Chih-Hao
口試委員: 陳祺
Chen, Chi
張書維
Chang, Shu-Wei
施閔雄
Shih, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 72
中文關鍵詞: 共振腔光致激發
外文關鍵詞: Resonator, Photoluminescence
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們的理論解釋了球型共振腔的光致激發頻譜的物理機制並利用模擬結果來解釋實驗。而其中考慮到的物理機制包括 (1)在微米球之下考慮依孔隙率(Porosity)修正之等效介電常數、 (2) 波色爾效應(Purcell effect)如何影響光子態密度 、(3)受激輻射和自發輻射之速率方程、(4) 激子偏振子(exiton-polariton)效應,同時在最後我們也簡略地介紹金屬奈米球的非局域性效應(non-local effect)。
    主要的理論架構為 : 在球座標系統下將格林函數用米基底(Mie Basis)做展開,然後解戴森方程式(Dyson equation)得到滿足球型邊界條件之下微米球系統的完整解,這個方法使我們避開了其他人常遇到的困境。由於本徵值為複數,因此無法以數值方法得到完整基底,並且在對格林函數使用本徵函數展開時,必須重新對本徵函數做歸一化,此歸一化對漏溢模態(leaky mode)有收斂性的疑慮,在考慮波色爾效應的情形之下,該歸一化常數被物理量體積所吸收,因此稱之為波色爾效應的等效體積。
    而我們在得到球型共振腔完整解型態的格林函數後,只需將展開係數做頻率的極點展開(pole expansion),這使得我們可以在共振態上考慮波色爾效應和受激輻射與自發輻射的修正,最終得到能適切解釋實驗之模擬結果。而在我們發表的第二篇期刊中,加入了激子偏振子對折射率之效應,使我們的模擬結果能夠進一步地應用在近紫外光波段。
    最後我們亦探討了金屬奈米球的量子效應,在多體理論隨機相位近似(Random phase approximation)之下得到非局域性介電常數,並與先前久保(Kubo) 的理論比對,我們的理論能夠更適用於遠紅外波段,同時也證明了在五奈米以下的金屬球,其非局域性量子效應是不可忽略的。


    We present theoretical studies of photoluminescence (PL) spectra of spherical microcavities. Our theory explains possible physical mechanisms for the lineshapes of PL spectra and the simulation results based on our model match the experimental data very well. The physical mechanisms considered include: (1) the dielectric function modified by porosity in microspheres via an effective-medium theory, (2) the modification of photon density due to the Purcell effect, (3) the relation between rate equations and spontaneous and stimulated emission, and (4) exciton-polariton effect. In the end, we also consider the non-local effect of metallic nano-particles and their coupling with microcavities.
    The main concept of theory: to expand the free space Green’s function in spherical coordinate with the Mie-basis and solve Dyson’s equation which satisfies the spherical form of boundary conditions to get the full Green’s function of microsphere. This strategy prevents the difficulty encountered by other researchers encounter. Since the eigenvalues are complex numbers, it is difficult to get the complete basis numerically. On the other hand, when Green’s function is expanded by eigen basis, the normalization of eigen function is necessary. This normalization is also ill-defined in terms of convergence for leaky modes. With the Purcell effect taken into account, this normalization is incorporated into the formalism through the effective volume of microsphere.
    After we obtain the full Green’s function of spherical cavity, we do the pole expansion and extract the expansion coefficients for the Mie basis. This expansion allows us to modify our resonance modes with the Purcell effect, the spontaneous emissions and stimulated emissions. Including all of these effects, our theoretical simulation fits the experimental data well. For our publication in MRS Advances [46], the exciton-polariton effect is also involved so that our simulation can better fit the near ultraviolet (UV) emissions of zinc-oxide microsphere.
    In the end, we also discuss the quantum effect of metallic nano-particles. The random phase approximation (RPA) in many-body theory is applied to get the non-local dielectric function. The result is also compared with Kubo’s theoretical result. Our theory works better in the infrared regime and also proves that the non-local quantum effect is not negligible when the size of metallic nanoparticle is below 5 nm.

    摘要 ii Abstract iv 誌謝 vi List of Figures ix Chapter 1. Introduction 1 Chapter 2. Porosity and Effective medium theory 10 Chapter 3. Green’s Function and Leaky mode 13 Chapter 4. Mode density and Purcell Effect 20 Chapter 5. Spontaneous and Stimulated Emission 27 Chapter 6. Polariton Effect 40 Chapter 7. Nonlocal Dielectric Function of Metallic Nanoparticles 45 Chapter 8. Conclusion 54 Chapter 9. Perspective 60 References 61 Appendix 67

    1. R. S. Moirangthem, P. J. Cheng, P. C.-H. Chien, B. T. H. Ngo, S. W. Chang, C. H. Tien, Y. C. Chang, Optical cavity modes of a single crystalline zinc oxide microsphere, Opt. Exp. 21, 3010 (2013)
    2. T. H. B. Ngo, C. H. Chien, S. H. Wu, and Y. C. Chang, Size and morphology dependent evolution of resonant modes in ZnO microspheres grown by hydrothermal synthesis, Opt. Exp. 24, 16010 (2016).
    3. H. Dong, S. Sun, L. Sun, W. Zhou, L. Zhou, X. Shen, Z. Chen, J. Wanga and L. Zhang, Thermodynamic-effect-induced growth, optical modulation and UV lasing of hierarchial ZnO Fabty-Perot resonators, J. Mater. Chem. 22, 3069 (2012).
    4. D. J. Rogers, F. H. Tejerani, V. E. Sandana, M. Razeghi, ZnO thin films and nanostructures for emerging optelectronic applications, Proc. of SPIE 7605, 76050K (2010).
    5. G.X.Zhu,Y.J.Liu,H.Xu,Y.Chen,X.P.ShenandZ. Xu, Photochemical deposition of Ag nanocrystals on hierarchial ZnO microspheres and their enhanced gas-sensing properties, J. Phys. Chem. C 115, 21971 (2011).
    6. H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, J. Liang, X. G. Liu, H. S. Jia and B. S. Xu, Worm-like Ag/ZnO core-shell heterostructural composities: fabrication, characterization, and photocatalysis, J. Phys. Chem. C 116, 16182 (2012)
    7. C.Xu, J.Dai, G.Zhu, G.Zhu,Y.Lin, J.Li, and Z. Shi, Whispering-gallery mode lasing in ZnO microcaavities Laser, Photonics Rev. 1, (2014).
    8. J. Liu, Identification of dispersion-dependent hexagonal cavity modes of an individual nanonail, Appl. Phys. Lett. 92 263102 (2008)
    9. Brent E. Little, Analytic Theory of coupling from tapered fibers and Half-Blocks into microsphere resonators, J. Lightwave Technol. 17, 704 (1999).
    10. S. Schiller, Asymptotic expansion of morphological resonance frequencies in Mie scattering, Appl. Opt. 12, 555 (1973).
    11. S. Schiller, R. L. Byer, High-resolution spectroscopy of whispering gallery modes in large dielectric spheres, Opt. lett. 16, 1138 (1991).
    12. M. Mansuripur, M. Kolesik, and P. Jakobsen, Leaky modes of dielectric cavities, Proc. SPIE 9931 99310B (2016).
    13. M. S. Tomas, Green function for multilayers: Light scattering in planer cavities, Phys. Rev. A 51, 2545 (1995).
    14. E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681 (1946).
    15. X. Zambrana-Puyalto and N. Bonod, Purcell factor of spherical Mie resonators, Phys. Rev. 91, 195422 (2015).
    16. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard and V. Thierry-Mieg. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity, Phys. Rev. Lett. 81, 1110 (1998).
    17 W. Yan, R. Faggiani, and P. Lalanne, Rigorous modal analysis of plasmonic nanoresonators, Phys. Rev. B 97, 205422 (2018)
    18 J. Yang, M. Perrin and P. Lalanne, Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators. Phys. Rev. X 5 021008 (2015)
    19 M. T. Tavis and F. W. Cummings, Stimulated and spontaneous emission of radiation in a single mode for N-TLMs, Phys. Rev. 140, 1051 (1965)
    20 A. Einstein, Zur Quantentheorie der Strahlung Mitteilungen der Physikalischen Gesellschaft Zurich 18, 47 (1916).
    21. Groth, Mike. “Photophones revisted”,Amateur Radio magazine , Wireless Institute of Australia, Melbourne, pp. 12–17 (1987).
    22. Karen Esther Grutter, Optical whispering-gallery mode resonators for applications in optical communication and frequency control,” PHD thesis, University of California, Berkeley. (2013).
    23. B.E. Little, Very high-order microring resonator filters for WDM applications, IEEE Phton Technol. Lett. 16, 2263 (2004).
    24. Peter Nordlander, A classical treatment of optical tunneling inplasmonic gaps: extending the quantumcorrected model to practical situations. Faraday Discuss., 178, 151 (2015).
    25. V. A. Markel, Introduction to the Maxwell Garnett approximation: tutorial, J. Opt. Soc. Am. A 33, 1244 (2016).
    26. A. Janotti and C. G. Van de Walle, Oxygen vacancies in ZnO, Appl. phys. Lett. 87, 122102 (2015).
    27 B. K. Ridley, Quantum processes in semiconductors, 3rd Ed., Clarendon Press, Oxford, (1993).
    28 O. Svelto, Principles of Lasers, 5th ed., Springer , New York, (2010).
    29 Optical Processes in Microcavities, Advanced Series in Applied Physcis, vol. 3, edited by R. K. Chang and A. J. Campillo, World Scientific, (1996)
    30 E. A. Muljarov and W. Langbein, Exact mode volume and Purcell factor of open optical systems, Phys. Rev. A 94, 235438 (2016)
    31 S. Okamoto, K. Inaba, T. Lida, H. Ishihara, S. Ichikawa, M. Ashida, Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials, Scientific Reports 4, 5186 (2014).
    32. T. H. B. Ngo, C. H. Chien, S. H. Wu, and Y. C. Chang, Size and morphology dependent evolution of resonant modes in ZnO microspheres grown by hydrothermal synthesis, Opt. Exp. 24, 16010 (2016).
    33. P. A. Rodnyi and I. V. Khodyuk, Optical and luminescence properties of zinc oxide (Review), Optics and Spectroscopy 111 776 (2011).
    34 J. J. Hopfield, Resonant scattering of polaritons as composite particles, Phys. Rev. 182, 945 (1969).
    35 C. H. Chien, S. H. Wu, T. H-B. Ngo, Y. C. Chang, Interplay of Purcell effect, stimulated emission, and leaky modes in the photoluminescence spectra of microsphere cavities, Phys. Rev. Applied 11, 051001 (2019).
    36 V. V. Mody, R. Siwale, A. Singh, and H. R. Mody, Introduction to metallic nanoparticles, J. Pharm. Bioallied 2, 282 (2010).
    37 G. Barton, Some surface effects in the hydrodynamic model of metals, Rep. Prog. Phys. 42, 963-1016 (1979).
    38 J. Lindhard, On the properties of a gas of charged particles, Mat.-Fys. Medd. 28, 8 (1954).
    39 A. R. Melnyk et. al., Theory of optical excitation of plasmons in metals, Phys. Rev. B 2, 835-850 (1970).
    40 P. Halevi, Spatial Dispersion in Solid and Plasmas, North-Holland, Amsterdam, (1992).
    41 R. Ruppin, Optical properties of small metal spheres, Phys. Rev. B 11, 2871-2876 (1975).
    42 C. Ciracì et. al., Probing the ultimate limits of plasmonic enhancement, Science 337, 1072 (2012).
    43 A. I. Fernandez-Dominguez et. al., Transformation-optics description of nonlocal effects in plasmonic nanostructures, Phys. Rev. Lett. 108, 106802 (2012).
    44 M. J. Rice et. al., Electronic polarizabilities of very small metallic particles and thin films, Phys. Rev. B 8, 474-482 (1973).
    45. M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability, Nature Communications 3, 1108 (2012).
    46. C. H. Chien and Y. C. Chang, Photoluminescence spectra of ZnO microspheres: effects of exciton-polariton and Purcell factor, MRS Advances 10 ,1557 (2019).

    QR CODE