簡易檢索 / 詳目顯示

研究生: 蔡志偉
Chih-Wea Tsai
論文名稱: 磁性隨機存取記憶體的寫入干擾錯誤模型及其測試與診斷方法
MRAM Write Disturbance Fault Modeling, Testing, and Diagnosis
指導教授: 吳誠文
Cheng-Wen Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 76
中文關鍵詞: 磁性隨機存取記憶體干擾錯誤錯誤模型記憶體測試診斷
外文關鍵詞: MRAM, Disturbance Fault, Fault Model, Memory, Testing, Diagnosis
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   磁性隨機存取記憶體(MRAM)被視為在未來具有潛力可以取代現有的靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)及快閃記憶體(Flash memory)等等內嵌式和商用式記憶體。它同時具備了隨機存取記憶體及快閃記憶體的優點,所以在未來很有可能會被廣泛地應用在系統晶片(System-On-Chip)上。近幾年來,有一些磁性隨機存取記憶體產品在市場上出現,但並不表示其測試相關問題已被解決。

      為了確保磁性隨機存取記憶體產品的品質及良率,藉由實際晶片的量測結果,本論文針對該記憶體提出了「寫入干擾錯誤模型(Write Disturbance Fault Model)」。同時也發展出一個稱作RAMSES-M的磁性隨機存取記憶體的錯誤模擬程式,利用它來推導寫入干擾錯誤模型的最短測試演算法。並且為了找出寫入干擾錯誤的錯誤原因及其程度,我們亦提出一「可適應診斷演算法(Adaptive Diagnosis Algorithm)」來進行錯誤診斷。藉由工研院電子所提供的磁性穿隧接面(Magnetic Tunneling Junction)元件模型,我們也建立了「翻轉式磁性隨機存取記憶體(Toggle MRAM)」陣列的SPICE電路模型,以獲得寫入干擾錯誤模型及其診斷方法的電路模擬結果。最後,本論文也提出了一個具有寫入干擾錯誤診斷能力的「磁性隨機存取記憶體內建式自我測試電路(MRAM Built-In Self-Test Circuit)」;同時利用翻轉式磁性隨機存取記憶體的「寫入前先讀(Read-before-Write)」寫入機制,我們亦提出一個特殊的內建式自我測試電路實現方法,可以用來縮短整體的測試時間。

      電路模擬及RAMSES-M程式模擬結果均顯示March C-測試演算法能夠偵測出寫入干擾錯誤,而且March-17N diagnosis可以區分出寫入干擾錯誤和傳統的錯誤模型。同時電路模擬結果亦証明了「可適應診斷演算法」足以用來診斷寫入干擾錯誤。而針對1-Mbit磁性隨機存取記憶體所提出的內建式自我測試電路之硬體面積只佔該記憶體的0.75%;若再針對翻轉式磁性隨機存取記憶體,將此測試電路整合「寫入前先讀」之機制,則可大幅地縮短所需的測試時間。


    The Magnetic Random Access Memory (MRAM) is considered one of the potential candidates that will replace current on-chip and commodity memories (SRAM, DRAM, and flash memory) in the future. MRAM combines advantages of RAM and flash memory, making it a potential choice for system-on-chip (SOC). There are few MRAM products on the market presently, but this does not imply the test issues of MRAM are solved.

    For assuring the quality and yield of MRAM, we present the Write Disturbance Fault (WDF) model for MRAM, which is justified by chip measurement results. We also present an MRAM fault simulator called RAMSES-M, based on which we derive the shortest test for the proposed WDF model. To identify WDF, an Adaptive Diagnosis Algorithm (ADA) is developed for fault diagnosis. We also construct the SPICE model of toggle MRAM array from the magnetic tunneling junction (MTJ) device model of ERSO* to obtain circuit simulation results for WDF testing and diagnosis. Finally, we design an MRAM BIST circuit with WDF diagnosis capability, and a particular BIST implementation method which utilizes the Read-before-Write mechanism is proposed to reduce overall test time.

    The experimental results from circuit simulation and RAMSES-M show that the March C- test algorithm detects WDF, and March-17N diagnosis algorithm distinguishes the WDF from conventional faults. Also, circuit simulation result justifies that the adaptive diagnosis algorithm is useful for diagnosis of a WDF cell. Finally, BIST circuit has only 0:75 % of hardware overhead for a 1-Mbit MRAM, and test time is further shortened for the toggle MRAM.

    *Electronics Research and Service Organization, Industrial Technology Research Institute, Taiwan

    Abstract i 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Proposed Fault Model and Testing Method . . . . . . . . . . . . . . . . . . . . . . 2 1.3 ThesisOrganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Magnetic Random Access Memory (MRAM) 4 2.1 OverviewofMRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 AsteroidMRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Toggle MRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 CellStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 MTJMaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 BasicOperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.1 WriteOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.2 ReadOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Write Disturbance Fault Model 10 3.1 MagneticField ImpactonMRAMOperation . . . . . . . . . . . . . . . . . . . . 10 3.2 WriteDisturbanceFault (WDF)Model . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.1 Shift ofOperatingRegion . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.2 Proposed Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 TestingforWriteDisturbanceFault . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.1 FaultActivationandDetection . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.2 ShortestTestingMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.3 MRAMFaultSimulator: RAMSES-M. . . . . . . . . . . . . . . . . . . . 16 4 Diagnosis forWrite Disturbance Fault 18 4.1 Purpose of WDF Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Influence of Different Shift Amount . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Adaptive Diagnosis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3.1 Phase 1:DetectionPhase . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.2 Phase 2: CurrentScanPhase . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 CostAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4.1 TraditionalMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Circuit Simulation of MRAM 29 5.1 SPICEModelofMRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.1 MTJCellModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.2 MemoryArrayModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1.3 MagneticFieldDisturbanceModeling . . . . . . . . . . . . . . . . . . . . 33 5.1.4 Defect Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 SimulationofFaultyMRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2.1 SimulationforWDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2.2 Simulation for WDF Diagnosis . . . . . . . . . . . . . . . . . . . . . . . 36 6 Built-In Self-Test Design 37 6.1 TargetedMemoryDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.1 MemorySpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.2 Toggle MRAM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 BISTSpecification andArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2.1 BISTSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2.2 BISTArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.3 WDF Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3.1 Diagnosis Scheme and Flow . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3.2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.3.3 Sequencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3.4 TestPatternGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.4 TestTimeReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.4.1 Utilization of Read-before-Write Mechanism . . . . . . . . . . . . . . . . 52 6.4.2 ImplementationMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7 Experimental Results 56 7.1 SPICESimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.1.1 SimulationResultofWDF . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.1.2 Simulation Result of WDF Diagnosis . . . . . . . . . . . . . . . . . . . . 62 7.2 RAMSES-M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.3 BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.3.1 WDF Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.3.2 TestTimeReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8 Conclusion and Future Work 70 8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 8.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    [1] Semiconductor Industry Association, “International technology roadmap for semiconductors (ITRS), 2005 edition”, Dec. 2005.
    [2] R. Barth, “ITRS commodity memory roadmap”, in Proc. IEEE Int’l Workshop on Memory Technology, Design and Testing (MTDT), San Jose, July 2003, pp. 61–63.
    [3] T. Kai, M. Yoshikawa, M. Nakayama, Y. Fukuzumi, T. Nagase, E. Kitagawa, T. Ueda, T. Kishi, S. Ikegawa, Y. Asao, K. Tsuchida, H. Yoda, N. Ishiwata, H. Hada, and S. Tahara, “Improvement of robustness against write disturbance by novel cell design for high density MRAM”, in Proc. IEEE IEDM, Dec. 2004, pp. 583–586.
    [4] B. N. Engel, J. Akerman, B. Butcher, R.W. Dave,M. DeHerrera,M. Durlam, G. Grynkewich, J. Janesky, S. V. Pietambaram, N. D. Rizzo, J. M. Slaughter, K. Smith, J. J. Sun, and S. Tehrani, “A 4-Mb toggle MRAM based on a novel bit and switching method”, IEEE Trans. on Magnetics, vol. 41, no. 1, pp. 2851–2853, Jan. 2005.
    [5] L. Savtchenko, B. N. Engel, N. D. Rizzo,M. F. Deherrera, and J. Janesky, “Method of writing to scalablemagnetoresistive random accessmemory element”, U.S. Patent No. 6545906, Apr. 2003.
    [6] J. J. Nahas, T. Andre, C. Subramanian, B. Garni, H. Lin, A. Omair, and W. Martino, “A 4Mb 0.18um 1T1MTJ toggle MRAM memory”, in Proc. IEEE Int’l Solid-State Cir. Conf. (ISSCC), Feb. 2004, pp. 44–512.
    [7] M. Durlam, D. Addie, J. Akerman, B. Butcher, P. Brown, J. Chan,M. DeHerrera, B. N. Engel, B. Feil, G. Grynkewich, J. Janesky, M. Johnson, K. Kyler, J. Molla, J. Martin, K. Nagel, J. Ren, N. D. Rizzo, T. Rodriguez, L. Savtchenko, J. Salter, J. M. Slaughter, K. Smith, J. J. Sun, M. Lien, K. Papworth, P. Shah,W. Qin, R.Williams, L.Wise, and S. Tehrani, “A 0.18um 4Mb toggling MRAM”, in Proc. IEEE IEDM, Dec. 2003, pp. 34.6.1–34.6.3.
    [8] T. Suzuki, Y. Fukumoto, K. Mori, H. Honjo, R. Nebashi, S. Miura, K. Nagahara, S. Saito, H. Numata, K. Tsuji, T. Sugibayashi, H. Hada, N. Ishiwata, Y. Asao, S. Ikegawa, H. Yoda, and S. Tahara, “Toggling cell with four antiferromagnetically coupled ferromagnetic layers for high density MRAM with low switching current”, in Symp. on VLSI Circuits, Digest of Technical Papers, June 2005, pp. 188–189.
    [9] J. Akerman, P. Brown, M. DeHerrera, E. Fuchs M. Durlam, D. Gajewski, M. Griswold, J. Janesky, J. J. Nahas, and S. Tehrani, “Demonstrated reliability of 4-Mb MRAM”, IEEE Trans. on Device and Materials Reliability, vol. 4, no. 3, pp. 428–435, Sept. 2004.
    [10] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice, ComTex Publishing, Gouda, The Netherlands, 1998.
    [11] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Fault simulation and test algorithm generation for random access memories”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 4, pp. 480–490, Apr. 2002.
    [12] M. G. Mohammad, K. K. Saluja, and A. Yap, “Testing flash memories”, in Proc. 13th Int’l Conf. on VLSI Design, Jan. 2000, pp. 406–411.
    [13] M. G. Mohammad and K. K. Saluja, “Flash memory disturbances: Modeling and test”, in Proc. IEEE VLSI Test Symp. (VTS), Marina Del Rey, California, Apr. 2001, pp. 218 –224.
    [14] J.-C. Yeh, C.-F. Wu, K.-L. Cheng, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, “Flash memory built-in self-test using march-like algorithms”, in Proc. IEEE Int’l Workshop on Electronic Design, Test, and Applications (DELTA), Christchurch, Jan. 2002, pp. 137–141.
    [15] K.-L. Cheng, J.-C. Yeh, C.-W. Wang, C.-T. Huang, and C.-W. Wu, “RAMSES-FT: A fault simulator for flash memory testing and diagnostics”, in Proc. IEEE VLSI Test Symp. (VTS), Monterey, California, Apr. 2002, pp. 281–286.
    [16] S.-K. Chiu, J.-C. Yeh, C.-T. Huang, and C.-W. Wu, “Diagonal test and diagnostic schemes for flash memories”, in Proc. Int’l Test Conf. (ITC), Baltmore, Oct. 2002, pp. 37–46.
    [17] C.-L. Su, R.-F. Huang, C.-W. Wu, C.-C. Hung, M.-J. Kao, Y.-J. Chang, and W.-C. Wu, “MRAM defect analysis and fault modeling”, in Proc. Int’l Test Conf. (ITC), Charlotte, Oct. 2004, pp. 124–133.
    [18] M. Durlam, P. J. Naji, A. Omair, M. DeHerrera, J. Calder, J. M. Slaughter, B. N. Engel, N. D. Rizzo, G. Grynkewich, B. Butcher, C. Tracy, K. Smith, K. W. Kyler, J. J. Ren, J. A. Molla, W. A. Feil, R. G. Williams, and S. Tehrani, “A 1-Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects”, IEEE Jour. of Solid-State Circuits, vol. 38, no. 5, pp. 769–773, May 2003.
    [19] T. Honda, N. Sakimura, T. Sugibayashi, S. Miura, H. Numata, H. Hada, and S. Tahara, “MRAM-writing circuitry to compensate for thermal-variation of magnetization-reversal current”, in Symp. on VLSI Circuits, Digest of Technical Papers, June 2002, pp. 156–157.
    [20] C.-C. Hung, M.-J. Kao, W.-C. Lin, S. Chao, D. Tang, and M.-J. Tsai, “Low writing current magnetoresistive random access memory (MRAM) with side metal pillar write word line (PWWL)”, in Int’l Symp. on Advanced Magnetic Technologies, Taipei, Nov. 2003.
    [21] H. J. Kim, W. C. Jeong, K. H. Koh, G. J. Jeong, J. H. Park, S. Y. Lee, J. H. Oh, I. H. Song, H. S. Jeong, and K. Kim, “A process integration of high-performance 64-Kb MRAM”, IEEE Trans. on Magnetics, vol. 39, no. 5, pp. 2851–2853, Sept. 2003.
    [22] C.-L. Su, C.-W. Tsai, C.-W. Wu, C.-C. Hung, Y.-S. Chen, and M.-J. Kao, “Testing MRAM for write disturbance fault”, in Proc. Int’l Test Conf. (ITC), Santa Clara, Oct. 2006 (to appear).
    [23] J.-F Li, K.-L. Cheng, C.-T. Huang, and C.-W. Wu, “March-based RAM diagnosis algorithms for stuck-at and coupling faults”, in Proc. Int’l Test Conf. (ITC), Baltmore, Oct. 2001, pp. 758–767.
    [24] W. Reohr, H. Honigschmid, R. Robertazzi, D. Gogl, F. Pesavento, S. Lammers, K. Lewis, C. Arndt, Y. Lu, H. Viehmann, R. Scheuerlein, L.-K. Wang, P. Trouilloud, S. Parkin, W. Gallagher, and G. Muller, “Memories of tomorrow”, IEEE Circuits and Devices, vol. 18, no. 5, pp. 17–27, Sept. 2002.
    [25] S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M. Samant, “Magnetically engineered spintronic sensors and memory”, Proc. of the IEEE, vol. 91, no. 5, pp. 661–680, May 2003.
    [26] B. N. Engel, N. D. Rizzo, J. Janesky, J. M. Slaughter, R. Dave, M. DeHerrera, M. Durlam, and S. Tehrani, “The science and technology of magnetoresistive tunneling memory”, IEEE Trans. on Nanotechnology, vol. 1, no. 1, pp. 32–38, Mar. 2002.
    [27] M. Durlam1, T. Andre1, P. Brown1, J. Calder1, J. Chan1, R. Cuppens3, R.W. Dave1, T. Ditewig3, M. DeHerrera1, B.N. Engel1, B. Feil1, C. Frey2, D. Galpin2, B. Garni1, G. Grynkewich1, J. Janesky1, G. Kerszykowski1, M. Lien1, J. Martin1, J. Nahas1, K. Nagel1, K. Smith1, C. Subramanian1, J.J. Sun1, J. Tamim2, R.Williams1, L.Wise1, S. Zoll2, F. List3, R. Fournel2, B. Martino1, and S. Tehrani1, “90nm toggle mram array with 0:29 um2 cells”, in Symp. on VLSI Circuits, Digest of Technical Papers, June 2005, pp. 186–187.
    [28] D. Gogl, C. Arndt, J. C. Barwin, A. Bette, J. DeBrosse, E. Gow, H. Hoenigschmid, S. Lammers, M. Lamorey, L. Yu, T. Maffitt, K. Maloney, W. Obermaier, A. Sturm, H. Viehmann, D. Willmott, M. Wood, W. J. Gallagher, G. Mueller, and A. R. Sitaram, “A 16-Mb MRAM featuring bootstrapped write drivers”, IEEE Jour. of Solid-State Circuits, vol. 40, no. 4, pp. 902–908, Apr. 2005.
    [29] T. W. Andre, J. J. Nahas, C. K Subramanian, B. J. Garni, H. S. Lin, A. Omair, and W. L. Martino, Jr., “A 4-Mb 0.18-um 1T1MTJ toggle MRAM with balanced three input sensing scheme and locally mirrored unidirectional write drivers”, IEEE Jour. of Solid-State Circuits, vol. 40, no. 1, pp. 301–309, Jan. 2005.
    [30] B. F. Cockburn, “Tutorial on magnetic tunnel junctionmagnetoresistive random-access memory”, in Proc. IEEE Int’l Workshop on Memory Technology, Design and Testing (MTDT), San Jose, Aug. 2004, pp. 46–51.
    [31] T. J. Bergfeld, D. Niggemeyer, and E. M. Rudnick, “Diagnostic testing of embedded memories using BIST”, in Proc. Conf. Design, Automation, and Test in Europe (DATE), Paris,Mar. 2000, pp. 305–309.
    [32] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu, “Error catch and analysis for semiconductor memories using March tests”, in Proc. IEEE/ACM Int’l Conf. on Computer-Aided Design (ICCAD), San Jose, Nov. 2000, pp. 468–471.
    [33] C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai, “BRAINS: A BIST complier for embedded memories”, in Proc. IEEE Int’l Symp. on Defect and Fault Tolerance in VLSI Systems (DFT), Yamanashi, Oct. 2000, pp. 299–307.
    [34] C.-L. Su, Y.-J. Chang, K.-L. Luo J.-C. Ho, and C.-W. Wu, “A built-in current stress testing method for memory”, R.O.C. Patent, Sept. 2005, (Applying).
    [35] K.-L. Cheng, C.-W. Wang, J.-N. Lee, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, “FAME: a fault-pattern based memory failure analysis framework”, in Proc. IEEE/ACM Int’l Conf. on Computer-Aided Design (ICCAD), San Jose, Nov. 2003, pp. 595–598.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE