簡易檢索 / 詳目顯示

研究生: 陳柏嘉
Chen, Bo-Chia
論文名稱: 泡棉盤被動式空氣採樣器之定量改善與擴散梯度薄膜之監測效能評估
指導教授: 凌永健
口試委員: 凌永健
阮國棟
黃賢達
王家麟
杜敬明
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 202
中文關鍵詞: 泡棉盤被動式空氣採樣器擴散梯度薄膜被動式空氣
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國際現行的採樣標準方法,多用需外加能源及人為控制的主動式採樣方法,然而主動式採集樣品分析結果只代表特定時間內之污染物組成和濃度,為瞬時濃度值,無法呈現出一般的污染情形,必須提高採樣的時間長度和頻率才有可能釐清,對於超微量污染物則需加長採樣時間至採集儀器足以偵測的濃度,導致工作量大且花費不貲,而被動式採樣裝置(PAD)不需用外加能源及人為控制,可以進行大地區長時間採樣,採樣之時間和空間解析度佳,檢測結果與生物毒性關聯性佳,國際間相關研究及應用與日俱增。
    本研究開發新的風速統計方式,用以定量風速影響,得到風速校正因子,成功校正泡棉盤(PUF disk)被動式空氣採樣器(PAS)採樣速率,在高風速時(> 4 m/s)使用PAS測得之類戴奧辛化合物(DCLs)濃度及趨勢與主動式空氣採樣器(AAS)類似,同時使用階層式集群分析法(HCA)顯示PUF disk PAS得到之周界空氣DCLs同源物組成特性與AAS相似,並成功用於實際監測與釐清可能污染來源,結果顯示台灣的代表高污染潛勢地區主要汙染來源類別為小型焚化爐、輔助燃料(木削為主)和二次銅/鐵冶煉製程;東南亞的代表地區主要為交通廢氣和火耕行為貢獻,且其濃度較低,屬於背景值範圍。
    擴散梯度薄膜(DGT),使用擴散膠將吸附樹脂與溶液分隔,擴散膠可作質傳的擴散控制,可藉採樣天數和擴散係數獲得金屬物種的估算濃度。本研究的模擬實驗建立Mn、Ni、Cu、In、Cd、Ga、Ba和Pb等之擴散速率,DGT用於實際監測河川水和湖水等自然水體,歸納出DGT能測得Mn、Ni和Cu與主動式方法類似的濃度結果;In、Cd、Ga、Ba、Pb、Cr、Fe、Mo、Ag、As、Se和Sb會因形成物種使濃度有差異,但能反映濃度級數和趨勢。


    The standard sampling methods usually require external power and controller. The methods usually collected a small amount of discrete samples which were subsequently analyzed using standard methods. If the data meet the requirements of quality control and quality assurance, we can identify law-violating contaminating source in due time. However, the data can’t represent the normal pollution situation. For contaminant concentration varying with time, we need to prolong sampling time and increase sampling frequency to assist identifying the contaminating source at the price of heavier workload and higher expense. Similar problems are encountered when analyzing ultratrace contaminants, bioaccumulating and bioavailable toxic substances. Passive accumulation devices (PAD) are free of external power and human intervention.
    Polyurethane foam (PUF) disk passive air sampler (PAS) has been successfully applied to persistent organic pollutants (POPs) in air. This study we successfully quantified the wind effect by monitoring and classifying wind speeds into ranges. Our calculated concentrations of dioxin-like compounds for PUF disk PAS samples approach those determined by active air sampling (AAS) methods. The hierarchical cluster analysis (HCA) indicated the PUF disk PAS can determine congener profiles of PCDD/Fs in ambient air. We also clarified the kind of dioxin pollution sources in monitoring area: They are small incinerator, auxiliary fuel (wood shavings) and secondary copper/iron smelters at industrial area in Taiwan; traffic exhaust gas and outdoor burning at Southeast Asia with background level concentration.
    Diffusion Gradients in Thin-film (DGT) use diffusive gel to separate the resin layer from bulk solution. The metal ions diffusing through the diffusive gel, the diffusion coefficient in the gel and sampling tine could calculate labile metal ion concentration. We established diffusion coefficient of metal like Mn, Ni, Cu, In, Cd, Ga, Ba and Pb. About application to natural water like river and lake, DGT could calculate the labile Mn, Ni and Cu concentration approach those determined by active methods; the concentration grade and trend of Cd, Ga, Ba, Pb, Cr, Fe, Mo, Ag, As, Se and Sb.

    第一章 前言 1-1 1.1 被動式採樣技術的崛起 1-1 1.2 研究主題 1-8 第二章 修正高風速對PUF disk PAS的影響並定量空氣中類戴奧辛化合物 2.1 導論 2-1 2.1.1 持久性污染物 2-1 2.1.2 被動式空氣採樣器(passive air sampler, PAS)研究概況 2-5 2.1.3 PAS採樣理論 2-6 2.1.4 研究目的 2-9 2.2 實驗規劃 2-10 2.2.1 PUF disk PAS製作 2-10 2.2.2 模擬實驗 2-12 2.2.3 PUF disk PAS應用於偶發高風速地區的實際採樣 2-14 2.2.4 風速校正PAS數據方法 2-16 2.3 採樣與分析方法 2-19 2.3.1 採樣流程 2-19 2.3.2 前處理流程 2-20 2.3.3 HRGC/HRMS分析 2-29 2.4 結果與討論 2-39 2.4.1 品保/品管 2-39 2.4.2 模擬實驗高流量AAS和PUF disk PAS分析結果 2-41 2.4.3 建立飽和曲線 2-49 2.4.4 PUF disk PAS的採樣速率建立結果 2-52 2.4.5 階層式集群分析法(hierarchical cluster analysis, HCA)分析結果 2-56 2.4.6 採樣速率的風速影響校正 2-66 2.4.7 比較高流量AAS和PUF disk PAS的定量結果 2-68 2.5 結論 2-74 第三章 PUF disk PAS實際應用 3.1 高戴奧辛污染潛勢地區空氣中類戴奧辛化合物濃度與污染來源類別調查 3-1 3.1.1 研究動機 3-1 3.1.2 研究規劃 3-1 3.1.3 結果與討論 3-3 3.2 東南亞區域空氣中類戴奧辛化合物濃度與來源類別調查 3-31 3.2.1 研究動機 3-31 3.2.2 研究規劃 3-32 3.2.3 結果與討論 3-34 3.3 結論 3-48 第四章 DGT針對自然水體中金屬採樣方法開發 4.1 導論 4-1 4.1.1 微量金屬來源與簡介 4-1 4.1.2 擴散梯度薄膜(Diffusion Gradients in Thin-film, DGT)研究現況 4-5 4.1.3 DGT採樣理論 4-8 4.1.4 研究目的 4-11 4.2 實驗規劃 4-12 4.2.1 模擬實驗 4-12 4.2.2 實際採樣 4-15 4.3 採樣與分析方法 4-18 4.3.1 採樣流程 4-18 4.3.2 前處理流程 4-20 4.3.3感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectrometer, ICP-MS)分析 4-20 4.4 結果與討論 4-23 4.4.1 模擬實驗 4-23 4.4.2主動式採樣的濃度分析結果 4-31 4.4.3 DGT估算濃度與主動式分析濃度比較 4-43 4.5 結論 4-58 第五章 未來展望與總結 5.1未來展望 5-1 5.1.1泡棉盤被動式空氣採樣器(Polyurethane foam disk passive air sampler, PUF disk PAS) 5-1 5.1.2擴散梯度薄膜(Diffusion Gradients in Thin-film, DGT) 5-1 5.2總結 5-2 參考文獻 表 目 錄 表1-1 PAD的研發時程表 1-3 表1-2 被動式採樣與生物監測及主動式採樣的優、缺點比較 1-6 表2-1 17種戴奧辛同源物的毒性當量因子 2-3 表2-2 12種共平面型多氯聯苯世界衛生組織毒性當量因子 2-4 表2-3 PUF disk PAS及使用器具規格 2-11 表2-4 PUF disk PAS監測空氣中PCDD/Fs和DL-PCBs的模擬實驗內容 2-13 表2-5 不同風速範圍影響程度(Wc)的校正倍數假設 2-18 表2-6 PUF disk和氣相樣品使用的13C及37Cl-同位素標幟標準品溶液(PCDD/Fs) 2-22 表2-7 固相樣品使用的13C及37Cl-同位素標幟標準品溶液(PCDD/Fs) 2-23 表2-8 樣品使用的13C同位素標幟標準品溶液(DL-PCBs) 2-24 表2-9 HRGC/HRMS層析儀及質譜儀操作條件參數 2-31 表2-10 PCDD/Fs待測物和13C-及37Cl-同位素標幟物監測離子 2-32 表2-11 PUF disk和氣相樣品用的PCDD/Fs起始檢量校正標準溶液 2-33 表2-12 固相樣品用的PCDD/Fs起始檢量校正標準溶液 2-34 表2-13 樣品用的DL-PCBs起始檢量校正標準溶液 2-35 表2-14 樣品用的PCDD/Fs和DL-PCBs檢量校正相對感應因子品管限值 2-36 表2-15 樣品之PCDD/Fs和PCBs離子強度比之品管範圍 2-37 表2-16 模擬實驗和實際採樣分析PCDD/Fs和DL-PCBs數據的品保/品管結果 2-40 表2-17 模擬實驗高流量AAS的氣相PCDD/Fs同源物濃度 2-42 表2-18 模擬實驗高流量AAS的固相PCDD/Fs同源物濃度 2-43 表2-19 模擬實驗PUF disk PAS的PCDD/Fs同源物截存量 2-44 表2-20 模擬實驗高流量AAS的氣相DL-PCBs同源物濃度 2-45 表2-21 模擬實驗高流量AAS的固相DL-PCBs同源物濃度 2-46 表2-22 模擬實驗PUF disk PAS的DL-PCBs同源物截存量 2-47 表2-23 模擬實驗PUF disk PAS監測空氣中PCDD/Fs和DL-PCBs同源物的採樣速率(RStotal和RSg) 2-55 表2-24 實際採樣高流量AAS樣品中氣相(Cp)和固相(Cg)PCDD/F濃度 2-58 表2-25 實際採樣PUF disk PAS樣品中PCDD/F同源物截存量 2-59 表2-26 實際採樣高流量AAS樣品中氣相(Cp)和固相(Cg)DL-PCBs濃度 2-60 表2-27 實際採樣PUF disk PAS樣品中DL-PCBs同源物截存量 2-61 表2-28 模擬實驗和實際採樣PUF disk PAS架設期間的風速影響定量結果(M)和修正倍數(N) 2-67 表2-29 實際採樣高流量AAS和PUF disk PAS監測空氣中的PCDD/F和DL-PCB毒性當量濃度 2-70 表2-30 各方法計算實際採樣PUF disk PAS與高流量AAS毒性當量濃度的相對差異百分比(RPD, %) 2-71 表3-1 PUF disk PAS監測工業區的風速影響定量結果(M)和修正倍數(N) 3-4 表3-2 高污染潛勢地區之採集樣品的品保/品管結果 3-7 表3-3 PUF disk PAS和高流量AAS監測工業區空氣中PCDD/Fs毒性當量濃度 3-8 表3-4 PUF disk PAS監測工業區空氣中DL-PCBs毒性當量濃度 3-9 表3-5 PUF disk PAS監測工業區空氣中PCDD/Fs同源物截存量(I) 3-14 表3-6 PUF disk PAS監測工業區空氣中PCDD/Fs同源物截存量(II) 3-15 表3-7 PUF disk PAS監測工業區空氣中PCDD/Fs同源物截存量(III) 3-16 表3-8 PUF disk PAS監測工業區空氣中PCDD/Fs同源物截存量(IV) 3-17 表3-9 高流量AAS監測工業區空氣中PCDD/Fs同源物濃度(I) 3-18 表3-10 高流量AAS監測工業區空氣中PCDD/Fs同源物濃度(II) 3-19 表3-11 高流量AAS監測工業區空氣中PCDD/Fs同源物濃度(III) 3-20 表3-12 PUF disk PAS監測工業區空氣中DL-PCBs同源物截存量(I) 3-21 表3-13 PUF disk PAS監測工業區空氣中DL-PCBs同源物截存量(II) 3-22 表3-14 PUF disk PAS監測工業區空氣中DL-PCBs同源物截存量(III) 3-23 表3-15 PUF disk PAS監測工業區空氣中DL-PCBs同源物截存量(IV) 3-24 表3-16 PUF disk PAS在東南亞採樣時間和地區 3-32 表3-17 東南亞地區之採集樣品的品保/品管結果 3-34 表3-18 PUF disk PAS監測東南亞空氣中PCDD/Fs同源物截存量結果(第1次) 3-35 表3-19 PUF disk PAS監測東南亞空氣中PCDD/Fs同源物截存量結果(第2次) 3-36 表3-20 PUF disk PAS監測東南亞空氣中DL-PCBs同源物截存量結果(第1次) 3-37 表3-21 PUF disk PAS監測東南亞空氣中DL-PCBs同源物截存量結果(第2次) 3-38 表3-22 PUF disk PAS監測東南亞空氣中PCDD/Fs同源物定量濃度結果(第1次) 3-39 表3-23 PUF disk PAS監測東南亞空氣中PCDD/Fs同源物定量濃度結果(第2次) 3-40 表3-24 PUF disk PAS監測東南亞空氣中DL-PCBs同源物定量濃度結果(第1次) 3-41 表3-25 PUF disk PAS監測東南亞空氣中DL-PCBs同源物定量濃度結果(第2次) 3-42 表3-26 PUF disk PAS監測東南亞空氣中PCDD/Fs和DL-PCBs 毒性當量濃度結果 3-43 表4-1 不同模擬實驗水質條件 4-13 表4-2 ICP-MS儀器參數之參考值 4-22 表4-3 模擬實驗結果(偏酸性) 4-25 表4-4 不同濃度級數和流速的模擬實驗(偏鹼性)結果 4-26 表4-5 模擬實驗(偏酸性)截存量(ng) 4-27 表4-6 不同濃度級數和流速的模擬實驗(偏鹼性)截存量(ng) 4-28 表4-7 模擬實驗(偏酸性)重覆實驗結果 4-29 表4-8 不同濃度級數和流速的模擬實驗(偏鹼性)重覆實驗結果 4-30 表4-9 實際採樣日期和水質條件(A檢驗單位) 4-32 表4-10 實際採樣日期和水質條件(牛稠坑溪) 4-33 表4-11 實際採樣日期和水質條件(霄裡溪-第一次) 4-34 表4-12 實際採樣日期和水質條件(霄裡溪-第二次) 4-35 表4-13 實際採樣日期和水質條件(清華大學) 4-36 表4-14 實際主動式採樣濃度分析結果(ppb)-A檢驗單位 4-37 表4-15 實際主動式採樣濃度分析結果(ppb)-牛稠坑溪 4-38 表4-16 實際主動式採樣濃度分析結果(ppb)-霄裡溪(第一次) 4-39 表4-17 實際主動式採樣濃度分析結果(ppb)-霄裡溪(第二次) 4-40 表4-18 實際主動式採樣濃度分析結果(ppb)-清華大學 4-42 表4-19 第一次實際採樣DGT截存量(ng) -A檢驗單位 4-45 表4-20 實際採樣DGT截存量(ng)-牛稠坑溪和霄裡溪(第一次) 4-46 表4-21 實際採樣DGT截存量(ng)-霄裡溪(第二次) 4-47 表4-22 實際採樣DGT截存量(ng)-清華大學 4-48 表4-23 實際採樣DGT估算濃度(ppb)- A檢驗單位 4-49 表4-24 實際採樣DGT估算濃度(ppb)-牛稠坑溪和霄裡溪(第一次) 4-50 表4-25 實際採樣DGT估算濃度(ppb)-霄裡溪(第二次) 4-51 表4-26 實際採樣DGT估算濃度(ppb)-清華大學 4-52 表4-27 真實採樣主動式分析與DGT估算濃度倍率比較- A檢驗單位 4-53 表4-28 真實採樣主動式分析與DGT估算濃度倍率比較-牛稠坑溪和霄裡溪(第一次) 4-54 表4-29 真實採樣主動式分析與DGT估算濃度倍率比較-霄裡溪(第二次) 4-55 表4-30 真實採樣主動式分析與DGT估算濃度倍率比較-清華大學 4-56 表4-31 DGT實際採樣的適用環境條件和金屬物種 4-57   圖 目 錄 圖1-1 被動式採樣器應用於環境品質監測應用之論文 1-8 圖2-1 被動式空氣採樣器的平衡飽和曲線圖 2-8 圖2-2 PUF disk PAS裝置內部圖 2-11 圖2-3 模擬實驗PUF disk PAS架設照片 2-13 圖2-4 實際採樣地點和氣象站分布圖 2-15 圖2-5 酸性矽膠淨化管柱示意圖 2-27 圖2-6 酸性氧化鋁淨化管柱示意圖 2-27 圖2-7 活性碳淨化管柱示意圖 2-28 圖2-8 2,3,7,8-TeCDD在DB-5MS層析管柱之解析度 2-38 圖2-9 模擬實驗高流量AAS和PUF disk PAS的(a)PCDD/Fs和(b)DL-PCBs同源物組成分布比較 2-48 圖2-10 模擬實驗PUF disk PAS的PCDD/Fs截存量與採樣天數趨勢圖 2-50 圖2-11 模擬實驗PUF disk PAS的DL-PCBs截存量與採樣天數趨勢圖 2-51 圖2-12 模擬實驗高流量AAS樣品中(a)PCDD/Fs和(b)DL-PCBs同源物的氣固百分比 2-54 圖2-13 實際採樣高流量AAS樣品中PCDD/Fs同源物的氣固相百分比 2-62 圖2-14 實際採樣高流量AAS樣品中DL-PCBs同源物的氣固相百分比 2-63 圖2-15 實際採樣PUF disk PAS和高流量AAS樣品與美國各種空氣污染排放的PCDD/Fs同源物組成的HCA分析結果 2-64 圖2-16 實際採樣PUF disk PAS和高流量AAS樣品的DL-PCBs同源物組成的HCA分析結果 2-65 圖2-17 實際採樣高流量AAS和PUF disk PAS監測空氣中的PCDD/F的毒性當量濃度比較圖 2-72 圖2-18 實際採樣高流量AAS和PUF disk PAS監測空氣中的DL-PCB的毒性當量濃度比較圖 2-73 圖3-1 工業區採樣點分布圖 3-2 圖3-2 PUF disk PAS和高流量AAS監測工業區空氣中PCDD/s毒性當量濃度比較圖 3-10 圖3-3 PUF disk PAS監測工業區空氣中DL-PCBs毒性當量濃度比較圖 3-11 圖3-4 PUF disk PAS和高流量AAS樣品與列管工廠煙囪排放的PCDD/Fs同源物組成的HCA分析結果-A工業區 3-25 圖3-5 PUF disk PAS和高流量AAS樣品與列管工廠煙囪排放的PCDD/Fs同源物組成的HCA分析結果-B工業區 3-26 圖3-6 PUF disk PAS和高流量AAS樣品與列管工廠煙囪排放的PCDD/Fs同源物組成的HCA分析結果-C工業區 3-27 圖3-7 PUF disk PAS和高流量AAS樣品與美國各種空氣污染排放的PCDD/Fs同源物組成的HCA分析結果 3-28 圖3-8 PUF disk PAS樣品的DL-PCBs同源物組成的HCA分析結果-A、B和C工業區 3-29 圖3-9 PUF disk PAS監測東南亞地區空氣中PCDD/Fs和DL-PCBs的總毒性當量濃度分布圖 3-44 圖3-10 PUF disk PAS樣品與美國各種空氣污染排放的PCDD/Fs同源物組成的HCA分析結果 3-46 圖3-11 PUF disk PAS樣品的DL-PCBs同源物組成的HCA分析結果-東南亞地區 3-47 圖4-1 DGT的功能示意圖和對應之實際照片 4-7 圖4-2 DGT截存水中活性金屬離子示意圖 4-10 圖4-3 模擬系統設計圖(上)與實體圖(下) 4-14 圖4-4 牛稠坑溪採樣點分布圖 4-16 圖4-5 霄裡溪採樣點分布圖 4-16 圖4-6 清華大學景觀湖採樣點分布圖 4-17 圖4-7 實際採樣之DGT架設 4-19

    1. Schreiber, M. P.; Komppa, V.; Wahlstrom, M.; Laine-Ylijoki, J., Chemical and environmental sampling: quality through accreditation, certification and industrial standards. Accredit Qual Assur 2006, 10 (9), 510-514.
    2. Stuer-Lauridsen, F., Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment. Environ Pollut 2005, 136 (3), 503-524.
    3. Zabiegala, B.; Kot-Wasik, A.; Urbanowicz, M.; Namiesnik, J., Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Analytical and Bioanalytical Chemistry 2010, 396 (1), 273-296.
    4. Namiesnik, J.; Zabiegala, B.; Kot-Wasik, A.; Partyka, M.; Wasik, A., Passive sampling and/or extraction techniques in environmental analysis: a review. Analytical and Bioanalytical Chemistry 2005, 381 (2), 279-301.
    5. Zhang, H.; Davison, W., Performance-Characteristics of Diffusion Gradients in Thin-Films for the in-Situ Measurement of Trace-Metals in Aqueous-Solution. Anal Chem 1995, 67 (19), 3391-3400.
    6. Ahkola, H.; Herve, S.; Knuutinen, J., Overview of passive Chemcatcher sampling with SPE pretreatment suitable for the analysis of NPEOs and NPs. Environ. Sci. Pollut. Res. 2013, 20 (3), 1207-1218.
    7. Koziel, J. A.; Noah, J.; Pawliszyn, J., Field sampling and determination of formaldehyde in indoor air with solid-phase microextraction and on-fiber derivatization. Environ Sci Technol 2001, 35 (7), 1481-1486.
    8. Shoeib, M.; Harner, T., Characterization and comparison of three passive air samplers for persistent organic pollutants. Environ Sci Technol 2002, 36 (19), 4142-4151.
    9. Harner, T.; Farrar, N. J.; Shoeib, M.; Jones, K. C.; Gobas, F., Characterization of polymer-coated glass as a passive air sampler for persistent organic pollutants. Environ Sci Technol 2003, 37 (11), 2486-2493.
    10. Wania, F.; Shen, L.; Lei, Y. D.; Teixeira, C.; Muir, D. C. G., Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere. Environ Sci Technol 2003, 37 (7), 1352-1359.
    11. Li, W. J.; Zhao, H. J.; Teasdale, P. R.; Wang, F. Y., Trace metal speciation measurements in waters by the liquid binding phase DGT device. Talanta 2005, 67 (3), 571-578.
    12. Shoeib, M.; Harner, T.; Lee, S. C.; Lane, D.; Zhu, J. P., Sorbent-impregnated polyurethane foam disk for passive air sampling of volatile fluorinated chemicals. Anal Chem 2008, 80 (3), 675-682.
    13. Tandy, S.; Mundus, S.; Zhang, H.; Lombi, E.; Frydenvang, J.; Holm, P. E.; Husted, S., A new method for determination of potassium in soils using diffusive gradients in thin films (DGT). Environ. Chem. 2012, 9 (1), 14-23.
    14. Sui, D. P.; Li, J.; Zhang, G.; Liu, J. X.; Fan, H. T.; Sun, T., New Diffusive Gradients in Thin-films Device for Quantitative Measurement of Heavy Metals in Water. Chem. J. Chin. Univ.-Chin. 2013, 34 (5), 1132-1138.
    15. 持久性有機污染物的斯德哥爾摩公約(Stockholm Convention on persistent organic pollutants, POPs). http://chm.pops.int/.
    16. van der Gon, H. D.; van het Bolscher, M.; Visschedijk, A.; Zandveld, P., Emissions of persistent organic pollutants and eight candidate POPs from UNECE-Europe in 2000, 2010 and 2020 and the emission reduction resulting from the implementation of the UNECE POP protocol. Atmos Environ 2007, 41 (40), 9245-9261.
    17. Pozo, K.; Harner, T.; Wania, F.; Muir, D. C. G.; Jones, K. C.; Barrie, L. A., Toward a global network for persistent organic pollutants in air: Results from the GAPS study. Environ Sci Technol 2006, 40 (16), 4867-4873.
    18. Abalos, M.; Abad, E.; van Leeuwen, S. P. J.; Lindstrom, G.; Fiedler, H.; de Boer, J.; van Bavel, B., Results for PCDD/PCDF and dl-PCBs in the First Round of UNEPs Biennial Global Inter laboratory Assessment on Persistent Organic Pollutants. Trac-Trend Anal Chem 2013, 46, 98-109.
    19. Konoplev, A. V.; Volkova, E. F.; Kochetkov, A. I.; Pervunina, R. I.; Samsonov, D. P., Monitoring of persistent organic pollutants in the ambient air as an element of implementation of the Stockholm Convention on persistent organic pollutants. Russian Journal of Physical Chemistry B 2012, 6 (5), 652-658.
    20. Wu, R. S. S.; Chan, A. K. Y.; Richardson, B.; Au, D. W. T.; Fong, J. K. H.; Lam, P. K. S.; Giesy, J. P., Measuring and Monitoring POPs: A Critique Interdisciplinary Studies on Environmental Chemistry—Biological Responses to Chemical Pollutants © by TERRAPUB, Tokyo 2008, Eds., Y. Murakami, K. Nakayama, S.-I. Kitamura, H. Iwata and S. Tanabe, 1-6.
    21. Cheng, P. S.; Hsu, M. S.; Ma, E.; Chou, U.; Ling, Y. C., Levels of PCDD/FS in ambient air and soil in the vicinity of a municipal solid waste incinerator in Hsinchu. Chemosphere 2003, 52 (9), 1389-1396.
    22. Mari, M.; Nadal, M.; Schuhmacher, M.; Domingo, J. L., Monitoring PCDD/Fs, PCBs and metals in the ambient air of an industrial area of Catalonia, Spain. Chemosphere 2008, 73 (6), 990-998.
    23. Xu, M. X.; Yan, J. H.; Lu, S. Y.; Li, X. D.; Chen, T.; Ni, M. J.; Dai, H. F.; Wang, F.; Cen, K. F., Concentrations, Profiles, and Sources of Atmospheric PCDD/Fs near a Municipal Solid Waste Incinerator in Eastern China. Environ Sci Technol 2009, 43 (4), 1023-1029.
    24. Shin, S. K.; Jin, G. Z.; Kim, W. I.; Kim, B. H.; Hwang, S. M.; Hong, J. P.; Park, J. S., Nationwide monitoring of atmospheric PCDD/Fs and dioxin-like PCBs in South Korea. Chemosphere 2011, 83 (10), 1339-1344.
    25. Suzuki, K.; Kawamoto, K., Regional Air Pollution Caused by Dioxins from Numerous Emission Sources: Lessons from a Domestic Experience in Japan. Bull. Environ. Contam. Toxicol. 2012, 89 (2), 368-375.
    26. Ba, T.; Zheng, M. H.; Zhang, B.; Liu, W. B.; Xiao, K.; Zhang, L. F., Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China. Chemosphere 2009, 75 (9), 1173-1178.
    27. USEPA, Compendium Method TO-9A, Determination of polychlorinated, polybrominated and brominated/chlorinated dibenzo-p-dioxins and dibenzofurans in ambient air. 1999.
    28. Harner, T.; Bartkow, M. E.; Holoubek, I.; Klanova, J.; Wania, F.; Gioia, R.; Moeckel, C.; Sweetman, A. J.; Jones, K. C., Passive air sampling for persistent organic pollutants: Introductory remarks to the special issue. Environ Pollut 2006, 144, 361-364.
    29. Zabiegala, B.; Kot-Wasik, A.; Urbanowicz, M.; Namiesnik, J., Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Analytical and Bioanalytical Chemistry 2010, 396 (1), 273-296.
    30. Guidance for a Global Monitoring Programme for Persistent Organic Pollutants. http://www.chem.unep.ch/gmn/GuidanceGPM.pdf.
    31. Gouin, T.; Harner, T.; Blanchard, P.; Mackay, D., Passive and active air samplers as complementary methods for investigating persistent organic pollutants in the Great Lakes basin. Environ Sci Technol 2005, 39 (23), 9115-9122.
    32. Klanova, J.; Kohoutek, J.; Hamplova, L.; Urbanova, P.; Holoubek, I., Passive air sampler as a tool for long-term air pollution monitoring: Part 1. Performance assessment for seasonal and spatial variations. Environ Pollut 2006, 144 (2), 393-405.
    33. Choi, S. D.; Baek, S. Y.; Chang, Y. S.; Wania, F.; Ikonomou, M. G.; Yoon, Y. J.; Park, B. K.; Hong, S., Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and Antarctic research stations: Implications for long-range transport and local pollution. Environ Sci Technol 2008, 42 (19), 7125-7131.
    34. Li, Y. M.; Geng, D. W.; Liu, F. B.; Wang, T.; Wang, P.; Zhang, Q. H.; Jiang, G. B., Study of PCBs and PBDEs in King George Island, Antarctica, using PUF passive air sampling. Atmos Environ 2012, 51, 140-145.
    35. Klanova, J.; Harner, T., The challenge of producing reliable results under highly variable conditions and the role of passive air samplers in the Global Monitoring Plan. Trac-Trend Anal Chem 2013, 46, 139-149.
    36. Shoeib, M.; Harner, T., Characterization and comparison of three passive air samplers for persistent organic pollutants. Environ Sci Technol 2002, 36 (19), 4142-4151.
    37. Bartkow, M. E.; Booij, K.; Kennedy, K. E.; Muller, J. F.; Hawker, D. W., Passive air sampling theory for semivolatile organic compounds. Chemosphere 2005, 60 (2), 170-176.
    38. Tao, S.; Liu, Y. N.; Xu, W.; Lang, C.; Liu, S. Z.; Dou, H.; Liu, W. X., Calibration of a passive sampler for both gaseous and particulate phase polycyclic aromatic hydrocarbons. Environ Sci Technol 2007, 41 (2), 568-573.
    39. Hazrati, S.; Harrad, S., Calibration of polyurethane foam (PUF) disk passive air samplers for quantitative measurement of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs): Factors influencing sampling rates. Chemosphere 2007, 67 (3), 448-455.
    40. Chaemfa, C.; Wild, E.; Davison, B.; Barber, J. L.; Jones, K. C., A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants. Journal of Environmental Monitoring 2009, 11 (6), 1135-1139.
    41. Abdallah, M. A. E.; Harrad, S., Modification and Calibration of a Passive Air Sampler for Monitoring Vapor and Particulate Phase Brominated Flame Retardants in Indoor Air: Application to Car Interiors. Environ Sci Technol 2010, 44 (8), 3059-3065.
    42. Kennedy, K.; Hawker, D. W.; Bartkow, M. E.; Carter, S.; Ishikawa, Y.; Mueller, J. F., The potential effect of differential ambient and deployment chamber temperatures on PRC derived sampling rates with polyurethane foam (PUF) passive air samplers. Environ Pollut 2010, 158 (1), 142-147.
    43. Klanova, J.; Eupr, P.; Kohoutek, J.; Harner, T., Assessing the influence of meteorological parameters on the performance of polyurethane foam-based passive air samplers. Environ Sci Technol 2008, 42 (2), 550-555.
    44. Melymuk, L.; Robson, M.; Helm, P. A.; Diamond, M. L., Evaluation of passive air sampler calibrations: Selection of sampling rates and implications for the measurement of persistent organic pollutants in air. Atmos Environ 2011, 45 (10), 1867-1875.
    45. Tuduri, L.; Harner, T.; Hung, H., Polyurethane foam (PUF) disks passive air samplers: Wind effect on sampling rates. Environ Pollut 2006, 144 (2), 377-383.
    46. Moeckel, C.; Harner, T.; Nizzetto, L.; Strandberg, B.; Lindroth, A.; Jones, K. C., Use of Depuration Compounds in Passive Air Samplers: Results from Active Sampling-Supported Field Deployment, Potential Uses, and Recommendations. Environ Sci Technol 2009, 43 (9), 3227-3232.
    47. Mackay, D.; Yeun, A. T. K., MASS-TRANSFER COEFFICIENT CORRELATIONS FOR VOLATILIZATION OF ORGANIC SOLUTES FROM WATER. Environ Sci Technol 1983, 17 (4), 211-217.
    48. 行政院環境保護署環境檢驗所, NIEA A809.10B空氣中戴奧辛及呋喃採樣方法. 2001.
    49. 行政院環境保護署環境檢驗所, NIEA A810.13B空氣中戴奧辛及呋喃檢測方法. 2010.
    50. 行政院環境保護署環境檢驗所, NIEA M801.12B戴奧辛及呋喃檢測方法-同位素標幟稀釋氣相層析/高解析質譜法. 2007.
    51. USEPA, Method 1668A, Chlorinated Biphenyl Congeners in Water ,Soil ,Sediment ,and Tissue by HRGC/HRMS. 2003.
    52. Mari, M.; Schuhmacher, M.; Feliubadalo, J.; Domingo, J. L., Air concentrations of PCDD/Fs, PCBs and PCNs using active and passive air samplers. Chemosphere 2008, 70 (9), 1637-1643.
    53. Hazrati, S.; Harrad, S., Causes of variability in concentrations of polychlorinated biphenyls and polybrominated diphenyl ethers in indoor air. Environ Sci Technol 2006, 40 (24), 7584-7589.
    54. Lohmann, R.; Lee, R. G. M.; Green, N. J. L.; Jones, K. C., Gas-particle partitioning of PCDD/Fs in daily air samples. Atmos Environ 2000, 34 (16), 2529-2537.
    55. Lee, R. G. M.; Jones, K. C., Gas-particle partitioning of atmospheric PCDD/Fs: Measurements and observations on modeling. Environ Sci Technol 1999, 33 (20), 3596-3604.
    56. USEPA, Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds National Academy Sciences (NAS) Review Draft, Part I: Estimating Exposure to Dioxin-Like Compounds. 2003, EPA/600/P-00/001Cb.
    57. Lee, W. J.; Lewis, S. J. L.; Chen, Y. Y.; Wang, Y. F.; Sheu, H. L.; Su, C. C.; Fan, Y. C., Polychlorinated biphenyls in the ambient air of petroleum refinery, urban and rural areas. Atmos Environ 1996, 30 (13), 2371-2378.
    58. Lung, S. C. C.; Chen, C. F.; Hu, S. C.; Bau, Y. P., Exposure of Taiwan residents to polychlorinated biphenyl congeners from farmed, ocean-caught, and imported fish. Environ Sci Technol 2003, 37 (20), 4579-4585.
    59. Hsu, J. F.; Lee, C. C.; Su, H. J.; Chen, H. L.; Yang, S. Y.; Liao, P. C., Evaluation of background persistent organic pollutant levels in human from Taiwan: Polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls. Environ Int 2009, 35 (1), 33-42.
    60. West, J. J., Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters 2013, 8 (3), 034005.
    61. Heil, A.; Goldammer, J. G., Smoke-haze pollution: a review of the 1997 episode in Southeast Asia. Regional Environmental Change 2001, 2 (1), 24-37.
    62. Wikipedia, 2006年東南亞霾害. http://zh.wikipedia.org/wiki/2006%E5%B9%B4%E6%9D%B1%E5%8D%97%E4%BA%9E%E9%9C%BE%E5%AE%B3 2013.
    63. Afroz, R.; Hassan, M. N.; Ibrahim, N. A., Review of air pollution and health impacts in Malaysia. Environmental Research 2003, 92 (2), 71-77.
    64. Oanh, N. T. K.; Reutergardh, L. B.; Dung, N. T., Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environ Sci Technol 1999, 33 (16), 2703-2709.
    65. Pentamwa, P.; Oanh, T. K., Levels of Pesticides and Polychlorinated Biphenyls in Selected Homes in the Bangkok Metropolitan Region, Thailand. In Environmental Challenges in the Pacific Basin, Carpenter, D. O., Ed. 2008; Vol. 1140, pp 91-112.
    66. Chi, K. H.; Lin, C. Y.; Yang, C. F. O.; Wang, J. L.; Lin, N. H.; Sheu, G. R.; Lee, C. T., PCDD/F Measurement at a High-Altitude Station in Central Taiwan: Evaluation of Long-Range Transport of PCDD/Fs during the Southeast Asia Biomass Burning Event. Environ Sci Technol 2010, 44 (8), 2954-2960.
    67. 維基百科. http://zh.wikipedia.org/zh-tw/.
    68. 百度百科. http://baike.baidu.com/.
    69. 綠十字健康網. http://www.greencross.org.tw/toxin/heavy-metal/heavy_metal.htm.
    70. 國家環境毒物研究中心. http://nehrc.nhri.org.tw/toxic/index.php.
    71. Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/.
    72. 行政院環境保護署環境檢驗所, NIEA W103.54B 監測井地下水採樣方法. 2010.
    73. 行政院環境保護署環境檢驗所, NIEA W104.51C 河川、湖泊及水庫水質採樣通則. 2004.
    74. 行政院環境保護署環境檢驗所, NIEA W105.50B 深層大口徑監測井地下水微洗井採樣方法. 2008.
    75. 行政院環境保護署環境檢驗所, NIEA W109.51B 事業放流水採樣方法. 2009.
    76. Vrana, B.; Mills, G. A.; Allan, I. J.; Dominiak, E.; Svensson, K.; Knutsson, J.; Morrison, G.; Greenwood, R., Passive sampling techniques for monitoring pollutants in water. Trac-Trend Anal Chem 2005, 24 (10), 845-868.
    77. Davison, W.; Zhang, H., In-situ speciation measurements of trace components in natural-waters using thin-film gels. Nature 1994, 367 (6463), 546-548.
    78. Ltd., D. R., DGT® for measurement in waters, soils and sediments. http://www.dgtresearch.com/ 1997.
    79. Garmo, O. A.; Royset, O.; Steinnes, E.; Flaten, T. P., Performance study of diffusive gradients in thin films for 55 elements. Anal Chem 2003, 75 (14), 3573-3580.
    80. Persson, L. B.; Morrison, G. M.; Friemann, J. U.; Kingston, J.; Mills, G.; Greenwood, R., Diffusional behaviour of metals in a passive sampling system for monitoring aquatic pollution. J Environ Monitor 2001, 3 (6), 639-645.
    81. Gueguen, C.; Clarisse, O.; Perroud, A.; McDonald, A., Chemical speciation and partitioning of trace metals (Cd, Co, Cu, Ni, Pb) in the lower Athabasca river and its tributaries (Alberta, Canada). J Environ Monitor 2011, 13 (10), 2865-2872.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE