研究生: |
周凌宏 Chou, Ling-Hung |
---|---|
論文名稱: |
奈米碳管紙二極體之製備與研究 Production and characterization of p-n junction diode in composites made from carbon nanotubes and paper fibers |
指導教授: |
陳柏宇
Chen, Po-Yu 徐文光 Hsu, Wen-Kuang |
口試委員: |
薛森鴻
Xue, Sen-Hong 連德軒 Lian, De-Xuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 奈米碳管 、二極體 、電漿改質 、硼摻雜 、複合材料 |
外文關鍵詞: | carbon nanotube, diode, plasma treatment, boron doped, composite |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試開發以多壁奈米碳管紙之二極體。試片製作為將奈米碳管經過超音波震盪使其分散均勻後與紙漿混合,抽氣過濾後得到奈米碳管紙。再以摻雜硼,或是以氧氣、氮氣電漿對陣列奈米碳管的兩端進行化學表面修飾,如此可以獲得兩端具有不同功函數的奈米碳管複合材料。
本實驗測試不同重量百分濃度碳管含量的試片,發現含5%碳管濃度的試片具有較適合的電阻值。此外也將試片分別施打氮氣與氧氣電漿,經霍爾濃度載子量測後,證實奈米碳管本身表現出p型,而施打氮氣與氧氣店將皆為n型摻雜,摻雜硼則為p型。因此在碳管紙上一面做電漿處理,即可讓試片出現二極體中的p-n接面,而摻雜硼則是可以使原本就呈p型的碳管紙載子濃度上升。之後再以化學分析電子能譜儀(ESCA)分析鍵結的種類與比例關係,探討鍵結對於材料功函數的影響,發現施打氧氣與氮氣電漿將使式片功函數下降,而摻雜硼則會使功函數上升。另外比較過5、10、20分鐘氮氣與氧氣電漿處理時間的結果,透過量測而得的I-V曲線圖發現摻硼的碳管紙經過20分鐘電漿處理後之奈米碳管具有最符合二極體的I-V曲線特性。
本研究結果說明使用無毒且對環境友善的碳材料與紙纖維做為複合材料,並以電漿處理技術、高溫熱處理的方式取代傳統濕式化學改質便可對材料做到摻雜的作用,發展出製作過程容易,且在未來有潛力的二極體元件。
This research intends to create p-n junction diodes in composite films made from multi-wall carbon nanotubes (MWCNTs) and paper fibers. MWCNTs are ultrasonically dispersed and are subsequently mixed paper in the mixer. Suspension is transferred onto a petri-dish and is dried at elevated temperature to form composite films. As-made MWCNTs are of p-type; change into n-type upon oxygen and nitrogen plasma treatments. Incorporation of boron into MWCNTs enhances p-type property.
The p-n junction diodes can then be created by plasma treating one side of composite film and are verified by I-V and work function measurements. Study shows that composite films loaded with 5% w.t% MWCNTs display highly asymmetric I-V curves and excellent performance of diodes.
[1] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature., 354(6348), p. 56-58.
[2] 陳亞群(2007)。多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究。國立清華大學材料科學與工程研究所碩士論文。
[3] 張雅筑(2007)。常壓下以電暈方式製備奈米碳管或奈米結構。國立清華大學材料科學與工程研究所碩士論文。
[4] 李惠菁(2008)。多壁奈米碳管/聚乙烯醇之合成與其物理性質研究。國立清華大學材料科學與工程研究所碩士論文。
[5] Smalley, R.E., Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. (2003). Carbon nanotubes: synthesis, structure, properties, and applications. Springer Science & Business Media., Vol. 80.
[6] Odom, T.W., et al. (2000). Structure and Electronic Properties of Carbon Nanotubes. The Journal of Physical Chemistry B. 104(13): p. 2794-2809
[7] Dresselhaus, M.S., et al. (2000). Carbon Nanotubes, in The Physics of Fullerene-Based and Fullerene-Related Materials. Springer Netherlands: Dordrecht. p. 331-379.
[8] Saito, R., et al. (1992). Electronic structure of chiral graphene tubules. Applied Physics Letters. 60(18): p. 2204-2206.
[9] E. T. Thostenson, Z. Ten, T. W. Chou. (2001). Compos. Sci. Technol., 61, 1899.
[10] Dresselhaus,M. and P. Eklund, phonons in carbon nanotubes. Advances in Physics, 2000.49(6): p. 705-814
[11] Y. H. Yang, W.Z. Li, Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy, Applied Physics Letters 98(4) (2004)
[12] Saito, R., Dresselhaus, G. & Dresselhaus, M. S. (1988). Physical properties of carbon nanotubes. World scientific.
[13] Dresselhaus, M.S., Dresselhaus, G. & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications. Academic press.
[14] Dresselhaus, M.S. and P.C. Eklund. (2000). Phonons in carbon nanotubes. Advances in Physics. 49(6): p. 705-814.
[15] Hamada, N., S. Sawada, and A. Oshiyama. (1992). New one-dimensional conductors: Graphitic microtubules. Physical Review Letters. 68(10): p. 1579-1581.
[16] Dresselhaus, M.S., G. Dresselhaus, and A. Jorio. (2004) UNUSUAL PROPERTIES AND STRUCTURE OF CARBON NANOTUBES. Annual Review of Materials Research. 34(1): p. 247-278.
[17] Dai, H. (2002). Carbon nanotubes: opportunities and challenges. Surface Science. 500(1): p. 218-241.
[18] 李慶常,王美玲. 《數字電子技術基礎》. 機械工業出版社, 北京. 2009. ISBN 978-7-111-04154-2.
[19] Riverglennapts.com/
https://riverglennapts.com/ja/diode/310-diode-resistance.html
[20] Wikipedia
https://zh.wikipedia.org/wiki/File:PnJunction-Diode-ForwardBias.PNG
[21] Wikipedia
https://zh.wikipedia.org/wiki/File:PnJunction-Diode-ReverseBias.PNG
[22] I. Langmuir. (1928). Proceedings of the National Academy of Sciences of the United States of America. 14.
[23] Alfred Grill. (1994). Cold plasma in materials fabrication. IEEE. New York.
[24] M. I. Boulos, P. Fauchais, and E. Pfender. Thermal plasmas : fundamentals and applications.
[25] van der Pauw, L. J., A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. 1958.
[26] van der Pauw電阻率量測實驗.
[27] 霍爾效應及鍺晶體的導電載子的密度
[28] Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction
Ta-JenLia1Min-HsinYehab1Wei-HungChiangbYan-ShengLibGuan-LinChenbYow-AnLeuacTa-ChangTiendShen-ChuanLodLu-YinLineJiang-JenLincKuo-ChuanHoac
[29] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen. (1996). Phys. Rev. Lett., 76, 971.
[30] A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus and M. S.
Dresselhaus. (2003). New Journal of Physics, 5 139,1 139,17.
[31] X射線光電子能譜儀https://highscope.ch.ntu.edu.tw/wordpress/?p=72999
[32] Luoow.com https://www.luoow.com/dc_tw/100671438
[33] https://zh.wikipedia.org/zh-tw/紫外線電子能譜學
[34] Yanjing Liu, Jiawei He, Bing Zhang, Huacheng Zhu, Yang Yang, Li Wu, Wencong Zhang, Yanping Zhou and Kama Huanga. (2021). A self-boosting microwave plasma strategy tuned by air pressure for the highly efficient and controllable surface modification of carbon, RSC Adv.,11, 9955-9963.
[35] M.A. Montes-Morán, D. Suárez, J.A. Menéndez, E. Fuente. (2004). On the nature of basic sites on carbon surfaces: an overview. Carbon, 42 (7), pp. 1219-1225.
[36] S. Kabir, K. Artyushkova, A. Serov, B. Kiefer, P. Atanassov. (2016). Surf. Interface Anal., 48, pp. 293-300.
[37] Chieh-Tsung Lo, Keng-Wei Lin, Tzu-Pei Wang, Sheng-Min Huang, Chien-Liang Lee. (2021). Differentiating between the effects of nitrogen plasma and hydrothermal treatment on electrospun carbon fibers used as supercapacitor electrodes. Electrochimica Acta, Volume 381,138255.
[38] Yuxin Li and Ashley E. Ross. (2020). Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry. Analyst, 145, 805-815.
[39] G.A. Somorjai, Introduction to Surface Chemistry and Catalysis, John Wiley &
Sons, New York, 1994
[40] Work function modifications of graphite surface via oxygen plasma
treatmentJ. Duch a,∗, P. Kubisiak a, K.H. Adolfsson b, M. Hakkarainen b, M. Golda-Cepa a, A. Kotarba, Applied Surface Science 419 (2017) 439–4
[41] C. D. Wang, M. F. Yuen, T. W. Ng, S. K. Jha, Z. Z. Lu, S. Y. Kwok, T. L. Wong, X. Yang, C. S. Lee, S. T. Lee, and W. J. Zhang, Appl. Phys. Lett. 100, 253107 (2012).
[42] Tuning the work function of graphene by nitrogen plasma treatment with different radio-frequency powers. (2014). Applied Physics Letters, 104(23), 233103. doi:10.1063/1.4882159
[43] Boron-Doped Graphite for High Work Function Carbon Electrode in Printable Hole-Conductor-Free Mesoscopic Perovskite Solar Cells Miao Duan,† Chengbo Tian,† Yue Hu, Anyi Mei, Yaoguang Rong, Yuli Xiong, Mi Xu, Yusong Sheng, Pei Jiang, Xiaomeng Hou, Xiaotong Zhu, Fei Qin, and Hongwei Han
[44] 許景棟,奈米碳管的聲子,吸附性質與其新穎的合成技術,材料科學與工程研究
所,2008,國立清華大學:新竹
[45] M. Xue, S. Peng, F. Wang, J. Ou, C. Li, W. Li, Linear relation between surface
roughness and work function of light alloys, J. Alloys Compd. 692 (2017)
903–907, http://dx.doi.org/10.1016/j.jallcom.2