簡易檢索 / 詳目顯示

研究生: 林秉漢
論文名稱: 氧化鋯抑制性被覆及氧化鋅處理之敏化304不□鋼在高溫純水環境中的電化學行為研究
Electrochemical Behavior of Type 304 Stainless Steels Treated with ZrO2 or ZnO in High Temperature Pure Water
指導教授: 蔡春鴻
葉宗洸
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 122
中文關鍵詞: 沸水式反應器沿晶應力腐蝕龜裂電化學腐蝕電位抑制性批覆氧化鋯氧化鋅動態極化掃描
外文關鍵詞: Boiling Water Reactor (BWR), Intergranular Stress Corrosion Cracking (IGSCC), Electrochemical Corrosion Potential (ECP), Inhibitive Protective coating (IPC), ZrO2, ZnO, Potentiodynamic Polarization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十多年來,為減緩沸水式反應器 (Boiling Water Reactor, BWR) 組件的沿晶應力腐蝕龜裂 (Intergranular Stress Corrosion Cracking, IGSCC) 與輻射促進應力腐蝕龜裂 (Irradiation-Assisted Stress Corrosion Cracking, IASCC) 問題,已有許多方式被提出討論。加氫水化學 (Hydrogen Water Chemistry, HWC) 技術是在飼水中注氫來降低基材金屬的電化學腐蝕電位 (Electrochemical Corrosion Potential, ECP),已證實能有效防制IGSCC與IASCC的發生。然而,HWC技術在高注氫量下,會帶來升高管路輻射劑量的副作用,於是增益或取代HWC的被覆技術接著發展出來,其中以催化性被覆及抑制性被覆最為普遍。前者是利用貴重金屬催化氫的氧化反應,以促進HWC的效益;抑制性被覆則是在組件表面形成一阻絕被覆,以降低金屬表面氧化還原反應的速率,進而降低不□鋼組件的腐蝕速率。過去本實驗室在模擬反應器水環境下以動態熱水沉積法進行氧化鋯 (ZrO2) 抑制性被覆,研究結果顯示其對降低不□鋼組件的裂縫成長速率 (Crack Growth Rate, CGR) 有相當的成效,為進一步提升抑制性被覆技術的可行性,以針對未來實際應用的情形,本實驗提高濃度進行抑制性被覆,研究若縮短被覆時間對被覆效果的影響。
    另一方面在替代加氫水化學的技術尚未完全純熟之前,核電廠區的輻射劑量會隨著電廠運轉增加而累積,已成為核電廠目前急需控制和解決的迫切問題,所以近年來核能業界已逐漸發展出接近成熟的加鋅水化學技術以有效改善輻射劑量率,並廣泛的實際應用當中,不過卻無法證實加鋅後之組件對SCC是否存在有改善的效果,所以本篇論文將經加鋅水化學處理後的不□鋼試片做高溫電化學量測,以及表面結構的分析,以探討加鋅水化學是否有類似抑制性被覆之機制。
    本研究結果顯示,透過熱水沉積法完成之高濃度氧化鋯被覆的試片,試片表面鋯元素的含量會隨被覆時間的縮短而使被覆效果下降更多,且其抑制性效果仍侷限於陰極氧的還原反應,但根據腐蝕電流密度的下降現象可知,其仍具有一定程度的防蝕保護能力。而加鋅水化學的研究中,我們發現預長氧化膜候再加鋅處理的試片,表面氧化膜型態會發生改變,動態極化曲線結果顯示氧化膜的改變的確有類似抑制性的效應產生,而其抑制性效果甚至略為超過氧化鋯被覆之試片,證實添加Zn除了可以抑制爐水中Co-60沉積之能力外還有抑制SCC發生的潛力。


    第一章 緒論……………………………………………………………1 第二章 文獻回顧………………………………………………………6 2.1 加氫水化學 (Hydrogen Water Chemistry, HWC)…………….....6 2.2 貴重金屬被覆(Noble Metal Chemical Addition, NMCA)…….10 2.3 抑制性被覆……………………………………………………...13 2.3.1 抑制性被覆的方法…………………………………………13 2.3.2 抑制性被覆方法的比較與所面臨的瓶頸…………………21 2.4 不□鋼氧化膜型態及其影響…………………………………...22 2.5 加鋅水化學……………………………………………………...33 2.5.1 理論基礎…………………………………………………....33 2.5.2 實際電廠應用之發展現況………………………...……….39 2.5.3 相關實驗室研究……………………………………………44 第三章 理論基礎……………………………………………………..50 3.1 應力腐蝕龜裂…………………………………………………...50 3.1.1 形成的原因………………………………………………....52 3.1.2 防治方法……………………………………………..……..54 3.2 混合電位理論…………………………………………………...56 3.2.1 混和電位理論在水化學的應用……………………………57 3.2.2 理論平衡電位與交換電流密度計算…………………...….59 3.2.3 抑制性理論基礎……………………………………………63 第四章 實驗步驟與設備……………………………………………..67 4.1 實驗設計與方向……………………………………………..….67 4.2 實驗步驟………………………………………………………...67  4.3 試片備製…………………………………………...……………69 4.3.1 試片種類……………………………………………………69 4.3.2 試片熱敏化處理………………………………………..…..69 4.3.3 試片表面的拋光與清潔……………………………………69 4.3.4 試片預長氧化膜……………………………………………70 4.3.5 熱水沉積動態抑制性被覆…………………………………70 4.3.6 加鋅水化學處理……………………………………………71 4.4 實驗設備…………………………………………...……………71 4.4.1 水循環管路…………………………………………………73 4.4.2 壓力及流速控制……………………………………………73 4.4.3 溫度控制……………………………………………………74 4.3.4 水質監測與控制………………………………..…………..74 4.4.5 通入氣體流量控制…………………………………………75 4.4.6 數據紀錄……………………………………………………75 4.4.7 參考電極製備……………………………………………....76 4.5 試片材料特性分析與電化學分析…………………………...…76 4.5.1 表面顯微結構………………………………………………76 4.5.2 感應式偶合電漿分析………………………...…………….77 4.5.3 輝光放電分光儀 (Glow Discharge Spectrometer)…...……77 4.5.4 拉曼分析……………………………………………………79 4.5.6 動態電位極化掃描…………………………………………80 4.5.7 電化學表面阻抗分析………………………………………80 第五章 結果與討論…………………………………………………..82 5.1 試片實驗條件……………………………………………….…..82 5.2 表面顯微結構觀察及成份分析……………………………...…84 5.3 感應試偶合電漿分析結果………………………………...……90 5.4 試片GDS元素縱深分析…………………………………….…..91 5.5 拉曼分析結果……………………………………………….…..96 5.6 動態電位極化掃描分析……………………………………...…97 5.6.1 各條件試片在不同溶氧溶氫濃度下的動態電位極化掃瞄分析……………………………………………………………97 5.6.2 相同溶氧溶氫濃度下的各條件試片動態電位極化掃瞄結果比較…………………………………………………..……106 5.7 表面阻抗分析…………………………………………….……113 第六章 結論…………………………………………...…………….115 6.1 結論……………………………………………...……………..115 6.2 未來研究方向………………………………………………….116 參考文獻……………………………………………………...……….117

    1. M.E. Indig, Proc. 4th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE, Jekyll Island, GA., Aug.6-10, 1989, p. 4-411. 4th Int. Conf. on
    2. P.L Andresen, F.P Ford, S.M. Murphy,and J.M. Perks, “State of knowledge of Radiation Effects on Environmental Cracking in Light Water Reactor Core Materials,” Environmental Degradation of Materials in Nuclear Power System–Water Reactors, NACE(Houston,TX),p.1/83-1/121(1990)
    3. V. F. Baston et al., "BWR Plant-to-Fleet Water Chemistry Trends - Past and Present," Proc. 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, NACE, Breckenridge, Colorado, Aug. 6-10, 1995, p. 629.
    4. R. L. Cowan, Procding of 6th International Symposium on Environmental Degradation of Material in Nuclear Plant, San Diego, California, August 1993, NACE.
    5. U. S. Nuclear Regulatory Commission, Cracking of Vertical Welds in the Core Shroud and Degraded Repair, NRC Information Notice 97-17, April 4, 1997.
    6. Electric Power Research Institute, “BWR Water Chemistry Guideline, 1996 Revision,” EPRI TR-103315-R1, 1996.
    7. C.C. Lin, “ Hydrogen Water Chemistry Technology in BWRS”, Proc. of the 1998 JAIF Water Chemistry Conference, JAIF, Kashiwazaki, Japan, Oct.11-16, 1998, p.211.
    8. Young-Jin Kim,” Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288C Water”, session 3, Water Chemistry of Nuclear Reactor Systems, 2004.
    9. B. Stellwag, M. Lasch, and U. Staudt, 1998 JAIF Conference p186-193
    10. S. Hettiarachchi,” BWR SCC Mitigation Strategies and Their Effectiveness”, 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems, Stevenson, WA, Aug. 10-14, 2003.
    11. Yoichi Wada, Kazushige Ishida, and Masahiko Tachibana,” Effectiveness Analysis of Noble Metal Treatment to Mitigation of Intergranular Stress Corrosion Cracking of Stainless Steel in BWR Reactor Water Environment”, 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems, Stevenson, WA, Aug. 10-14, 2003.
    12. T. K. Yeh, C. H. Tsai and Y. H. Cheng, “ The Influence of Dissolved Hydrogen on the Corrosion of Type 304 SS Treated with Inhibitive Chemicals in High Temperature Pure Water”, Journal of Nuclear Science and Technology, Vol. 42, No. 5, p.462~469(May 2005)
    13. Y. J. Kim and P. L. Andresen, "Application of Insulated Protective Coatings for Reduction of Corrosion Potential in High Temperature Water," CORROSION/96, NACE, Denver, Colorado, Mar. 24-29, 1996, Paper Number 105.
    14. Y. J. Kim and P. L. Andresen, "Effect of Surface Property on Electrochemistry Kinetics in High Temperature Water," Water Chemistry of Nuclear Reactor Systems, 2002
    15. R. Pathania, Evaluation of ZrO2 Coatings to Mitigate IGSCC, BWRVIP Mitigation Committee Meeting, Lake Buena Vista, FL, December 1-2, 1999, EPRI.
    16. ZhuangFei Zhoui, Serguei N. Lvov,i, ii Suman Thakurii, Xiangyang Zhoui, Peter Chouiii, and Raj Pathaniaiii, ” Hydrothermal Deposition of Zirconia Coatings on BWR Materials for IGSCC Protection”, session 3, Water Chemistry of Nuclear Reactor Systems, 2004.
    17. B. Stellwag and R. Kilian, Siemens Nuclear Power GmbH U.Staudt, VGB Germany “Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants,” 3rd Workshop on LWR Coolant Water Radiolysis and Electrochemistry
    18. 王佰揚, “不同抑制性被覆條件之敏化304不□鋼在高溫純水環境中的電化學行為研究,” 國立清華大學碩士論文.
    19. Masato Okamura, “Corrosion Mitigation of BWR Structure Materials by The Photoelectric Method with TiO2,” 2005 Symposium on Water Chemistry and Corrosion on Nuclear Power Plant in Asia.
    20. C.S. Kumai, and T.M. Devine, “Oxidation of Iron in 2880C, Oxygen-Containing Water.” Corrosion. Vol. 61, No. 3.
    21. B. Stellwag, Corrosion Science, Vol. 40, No. 2, p. 337 (1998)
    22. Y.-J. Kim, ”Analysis of Oxide Film Formed on Type 304 Stainless Stell in 2880C Water Containing Oxygen,Hydrogen, and Hydrogen Peroxide,” CORROSION-Vol. 55, NO.1(1999)
    23. J. Robertson, “The mechanism of high temperature aqueous corrosion of stainless steels,” Corrosion Science, Vol..32, No.4, pp.443-465, 1991.
    24. C.S Kumai and T.M. Devine, “Oxidation of Iron in 2880C, Oxygen-Containing Water” CORROSION-Vol. 61, NO.3(2005)
    25. S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of SS in High Temperature Water”, Water Chemistry of Nuclear Reactor Systems, Oct. (2004)
    26. Y. J. Kim, Corrosion-Vol.51, No.11(1995)
    27. Bjorn Beverskog, “The Role of Zinc in LWRs”, Water Chemistry of Nuclear Reactor Systems, Oct. (2004)
    28. B. Beverskog and I. Puigdomenech, Corrosion-Vol.55, No.11(1999)
    29. 黃忠良,“精密陶瓷材料概論,”復漢出版社.
    30. W. J. Marble, EPRI Report NP-4072, June (1985)
    31. W. J. Marble, EPRI Report NP-6168, January (1989)
    32. T. Baba et al., proceedings JAIF Int`I Conf. on Water Chemistry in Nuclear Power Plants, (1998)
    33. R. L. Cowan et al, GE Nuclear Energy, Vallecitos Nuclear Center, “Effects of hydrogen water chemistry on radiation field buildup in BWRs,” Nuclear Engineering and Design 166(1996)31-36.
    34. T. Xue, W. C. Cooper, J. Appl. Electrochem. 21, 238 (1991)
    35. D. Cubicciotti, Water Chemistry of Nuclear Reactor System 6, BNES, p.206. London (1992)
    36. B. Skrifvars, Progress in the Understanding and Prevention of Corrosion, Vol.1, p.437, Barcelona, Spain (1993)
    37. B. Beverskog and I. Puigdomenech, Corrosion Science, Vol.39, Issue1, p.107-114 (1997)
    38. Benezeth, “Overcoming solubility limitations to zinc addition in PWRs, ” EPRI, CA:1003156 (2001)
    39. Doo-Ho Lee et al. “A Feasibility Study for the Application of Zinc Injection into the Primary Coolant of the Korean PWRs,” Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia 2003
    40. H. Ocken et al. ,“Recent Developments in PWR Zinc Injection,” Water Chemistry of Nuclear Reactor Systems, 2002
    41. Garcia, proceedings JAIF Int`I Conf. on Water Chemistry in Nuclear Power Plants, (1998)
    42. K. Ishigure, T. Kimura, and E. Kadoi, “Effect of Pre-conditioning with Zinc on the Surface Oxide Layer and Anodic Polarization Begavior of Stainless Steel,” symposium on water chemistry and corrosion on nuclear power plant in Asia 2005
    43. W. Y. Maeng, Y. S. Cho, “Effect of Dissolved Zn on the PWSCC of Alloy 600 in High Temperature Water,” symposium on water chemistry and corrosion on nuclear power plant in Asia 2005
    44. 梁仲賢,第四屆海峽兩岸材料腐蝕與防護研討會,“BWR環境下鋅、鈷離子對304不□鋼表面氧化膜之影響研究”,2004年10月.
    45. H. Kawamura et al. ,“Inhibitory Effect of Zinc Addition to High-Temperature Hydrogenated Water on Mill-Annealed and Prefilmed Alloy 600,” Corrosion-Vol.56, No.6(2000)
    46. P. L. Andresen, “Factors Governing The Predictoin of LWR Component SCC Behavior from Laboratory Data”,CORROSION/99, paper no. 145, Houston, TX, NACE International, (1999).
    47. M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill International.
    48. D. D. Macdonald, “Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors”, Corrosion, Vol.48, No.3, p.194(1992)
    49. J. B. Lee, Electrochemical Approach to the Corrosion Problems of Several Iron-Nickel-Chromium Alloys in High Temperature High Pressure Water, Ph.D. Thesis, Department of Metallurgical Engineering, The Ohio State University, U.S.A., 1978.
    50. D.D.Macdonal et al.,”Theoretical Estimation of Crack Growth Rates in Type304 Stainless Steel in BWR Coolant Environments,” Corrosion , Vol.52 , p.768-785(1996).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE