研究生: |
張子倉 Chang, Zi-Chang |
---|---|
論文名稱: |
Characterization of Tunable Narrow Localized Surface Plasmon Polariton Mode with T-Shaped Array Structure 在T型結構上可調變的及超窄侷域性表面電漿共振模態特性分析 |
指導教授: |
吳孟奇
Wu, Meng-Chyi 施閔雄 Shih, Min-Hsiung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | Surface Plasmon |
外文關鍵詞: | 表面電漿 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近年來,表面電漿在奈米光學領域裡是個相當熱門的題目。此篇論文主要研究紅外線波段的入射光與具有特定結構的金屬表面之間的耦合機制。
具有T型陣列的結構,不僅僅是利用存在銀與二氧化矽表面之間的電漿共振,還藉由中間的銀達到更好的侷域表面電漿特性。
由於此特別的結構,在此篇論文裡我們也會介紹奈米圖形產生系統裡面的對準系統。而此對準系統的誤差可以小於50nm。
此結構的所有特性也會藉由RCWA模擬方式表達出來。利用此結構在實驗方面我們也成功的得到可調變式的侷域表面電漿模態。
Abstract
In recent years, surface plasmon is very popular topics in the nano optics. The thesis is major to study the feature which the coupling of metal film with specific periodic structure and incident light with infrared wavelength.
The structure with T-shaped array not only employs the coupling of two SPP modes at interfaces Ag/SiO2 but also use the silver bridge. Depend on the silver bridge we can get better characteristic for localizing surface plasmon polariton.
Because of the specific structures we will also demonstrate the alignment technique in nanometer pattern generation system. The accuracy of alignment can be smaller than 50nm.
In simulation the other characteristics also been developed by using the theory of RCWA. Finally in the experiment we successfully obtain a tunable narrow localized surface plasmon (LSPP) mode by using the structure.
Reference
[1] R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Proc. Phys. Soc. London. 18, 269-275 (1902)
[2] J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. London. 203, 385-420 (1904)
[3] R.H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106, 874-881 (1957)
[4] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature. 391, 667-669 (1998)
[5] U. SchrÖter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. Lett. 60, 4992-4999 (1999)
[6] L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 86, 1110-1113 (2001)
[7] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755-6759 (2002)
[8] Tzyy-Jiann Wang and Chih-Wei Hsieh, “Phase interrogation of localized surface plasmon resonance biosensors based on electro-optic modulation,” Appl. Phys. Lett. 91, 113903 (2007).
[9] Sylvain Herminjard, Lorenzo Sirigu, Hans Peter Herzig, Eric Studemann, Andrea Crottini, Jean-Paul Pellaux et al., “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Exp. 17, 293-303 (2009)
[10] Takafumi Hatano, Baku Nishikawa, Masanobu Iwanaga, and Teruya Ishihara, “Optical rectification effect in 1D metallic photonic crystal slabs with asymmetric unit cell,” Opt. Exp. 16, 8236-8241 (2006)
[11] Kyujung Kim, Soon Joon Yoon, and Donghyun Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Exp. 14, 12419-12431 (2008)
[12] Ming-Wei Tsai, Chia-Yi Chen, Yu-Wei Jiang, Yi-Han Ye, Hsu-Yu Chang, Tzu-Hung Chuang et al., “Coupling between surface plasmons via thermal emission of a dielectric layer sandwiched between two metal periodic layers,” Appl. Phys. Lett. 91, 213104 (2007)
[13] Ming-Wei Tsai, Tzu-Hung Chuang, Chao-Yu Meng, Yi-Tsung Chang, and Si-Chen Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006)
[14] Chin-Ming Wang, Yia-Chung Chang, Ming-Wei Tsai, Yi-Han Ye, Chia-Yi Chen, Yu-Wei Jiang et al., “Reflection and emission properties of an infrared emitter,” Opt. Exp. 12, 14673-14678 (2007)
[15] Yi-Han Ye, Yu-Wei Jiang, Ming-Wei Tsai, Yi-Tsung Chang, Chia-Yi Chen, Dah-Ching Tzuang et al., “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93, 033113 (2008)
[16] Yi-Tsung Chang, Yi-Han Ye, Dah-Ching Tzuang, Yi-Ting Wu, Chieh-Hung Yang, Chi-Feng Chan et al., “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008)
[17] Yi-Han Ye, Yu-Wei Jiang, Ming-Wei Tsai, Yi-Tsung Chang, Chia-Yi Chen, Dah-Ching Tzuang, Yi-Ting Wu, and Si-Chen Lee, “Coupling of surface plasmons between two silver films in a Ag/SiO2/Ag plasmonic thermal emitter with grating structure,” Appl. Phys. Lett. 93, 263106 (2008)
[18] N. W. Ashcroft, and N. D. Mermin, “Solid State Physics”(Harcount).
[19] M. A. Ordal, Robert J. Bell, R. W. Alexander. Jr, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.,” Opt. Soc. Am. 24, 4493-4499 (1985)
[20] 邱燦賓, “電子束微影技術之鄰近效應修正,” 奈米通訊. 第七卷, 31 (2000)
[21] http://www.microchem.com
[22] http://www.jcnabity.com
[23] St´ephane Collin, Fabrice Pardo and Jean-Luc Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Exp. 15, 4310-4320 (2007)
[24] M.G. Moharam, E.B. Grann, D.A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995);
[25] M.G. Moharam, D.A. Pommet, E.B. Grann, and T. K. Gaylord “Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077-1086 (1995)
[26] E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985)