簡易檢索 / 詳目顯示

研究生: 辜韋智
Ku, Wei-Chi
論文名稱: 利用定量蛋白體學方法探討轉錄因子AP-4抑制HDM2基因轉錄的機制
Complementary Quantitative Proteomics Reveals that Transcription Factor AP-4 Mediates E-Box-Dependent Complex Formation for Transcriptional Repression of HDM2
指導教授: 吳文桂
Wu, Wen-Guey
陳玉如
Chen, Yu-Ju
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 1冊
中文關鍵詞: 轉錄因子定量蛋白體學互補性定量蛋白體學
外文關鍵詞: AP-4, HDM2, cICAT, iTRAQ
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • AP-4是具有basic helix-loop-helix (bHLH) 功能區的轉錄調節因子(transcription factor),並透過bHLH功能區與具特異序列 (5’-CAGCTG-3’) 的E-box DNA相互結合。目前許多證據指出,AP-4可調控許多細胞重要的生理功能,例如細胞生長、個體發育等。最近的研究顯示,AP-4會抑制與細胞生長及DNA損傷修補機制相關HDM2之轉錄,然而AP-4抑制HDM2轉錄的機制仍然未知。因此若能解開此轉錄調控的機制,將可讓吾人更加了解AP-4在細胞生長及DNA損傷修補機制中的生理功能。
    本研究中,吾人首先發現了HDM2的P2 啟動子 (HDM2-P2 promoter) 上的E-box序列(5’-CAGCTG-3’),並確認AP-4可透過與此E-box之結合,進而抑制HDM2之基因轉錄,吾人並進一步確認此抑制機制與p53無關。透過功能區缺失的研究,吾人發現AP-4上的glutamine/proline-rich功能區為抑制HDM2基因轉錄的重要功能區。綜合以上的實驗結果顯示,AP-4可能與未知的蛋白質結合,形成可以抑制HDM2基因轉錄的蛋白質複合體。
    為了更進一步了解AP-4抑制HDM2轉錄的機制,吾人結合DNA 親和性純化及包含cICAT與iTRAQ標定方法的互補性定量蛋白體學方法,找出可與HDM2-P2上的E-box結合的AP-4蛋白質複合體。吾人在此AP-4蛋白質複合體75個蛋白質中,發現13個具有顯著性變化的DNA 修補機制相關的蛋白質,顯示AP-4可能直接或間接參與DNA損傷修復機制的運作。
    此外,此AP-4蛋白質複合體亦包含轉錄調節因子、轉錄抑制因子、以及與轉錄抑制相關的組蛋白修飾酶,且AP-4可與其中數個蛋白質相互結合,如CTCF、SP1、以及HDAC1。當吾人進一步抑制細胞HDAC1酵素的活性時,發現並無法回復AP-4的轉錄抑制。此結果顯示AP-4並非透過以往已知與HDAC相關的轉錄抑制機制,達成抑制HDM2基因轉錄的作用。依據吾人之互補性定量蛋白體研究的數據,AP-4有可能透過在AP-4複合體中的祖蛋白甲基酶(histone methyltransferase)或合體重組蛋白複合體(nucleosome remodeling SWI/SNF complex),經由組蛋白甲基化或核體重組的方式,進而抑制HDM2的基因轉錄。
    總結來說,吾人藉由分子生物學方法,探討AP-4如何與HDM2之啟動子交互作用,達成抑制HDM2轉錄的目的。同時,吾人以單一性DNA親和性純化方式,初步分離與HDM2啟動子結合的AP-4蛋白複合體,並利用結合cICAT與iTRAQ標定方法的互補性定量蛋白體學方法,成功地分離出專一性的AP-4蛋白複合體。藉由分析此蛋白複合體的組成,吾人得以推論AP-4對於HDM2轉錄的可能抑制機制,並發現AP-4可能參與DNA損傷修補機制。此外,在本論文中吾人所提出的結合單一DNA親和性純化方式與互補性定量蛋白體學之方法,對於未來功能性蛋白質複合體之定量蛋白體學相關研究,提供了另一個有別於傳統生化純化方式的新策略。


    Transcription factor activating enhancer binding protein 4 (AP-4) is a basic helix-loop-helix protein that binds to E-box elements. AP-4 has received increasing attention for its regulatory role in cell growth and development, including transcriptional repression of the human homolog of murine double minute 2 (HDM2), an important oncoprotein controlling cell growth and survival, by an unknown mechanism.
    Here we demonstrate that AP-4 binds to an E-box located in the HDM2-P2 promoter in vitro and in vivo as demonstrated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Luciferase assay further revealed that AP-4 represses HDM2 transcription in a p53-independent manner. In addition, incremental truncations of AP-4 showed that the C-terminal glutamine/proline-rich domain is essential for transcriptional repression of HDM2.
    To further delineate the molecular mechanism(s) of AP-4 transcriptional control and its potential implications, we performed single-step DNA-affinity purification followed by complementary quantitative proteomics, cICAT and iTRAQ labeling methods, to identify a previously unknown E-box-bound AP-4 protein complex. The two labeling methods complementarily quantified 75 putative components in AP-4 protein complex, including the most significant recruitment of DNA damage–responsive proteins, followed by transcription factors, transcription repressors/corepressors, and histone-modifying proteins.
    Using AP-4 truncation mutants and DNA pull-down assay, specific interaction of AP-4 with CTCF, SP1, and histone deacetylase 1 (an AP-4 corepressor) was validated. Although AP-4 may repress HDM2 transcripion by recruiting HDAC, inclusion of HDAC specific inhibitor, trichostatin A, did not alleviate AP-4-mediated repression of HDM2 transcription. Taken together the data suggest a previously unidentified histone deacetylase-independent repression mechanism. Alternatively, the complementary quantitative proteomics study suggests that transcription repression occurs via coordination of AP-4 with other transcription factors, histone methyltransferases, and/or a nucleosome remodeling SWI/SNF complex. In addition to previously known functions of AP-4, our data suggest that AP-4 participates in a transcriptional regulating complex at the HDM2 promoter in response to DNA damage.
    In conclusion, we successfully demonstrate how AP-4 regulates HDM2 transcription via binding to the previously unknown AP-4 binding site. By taking the advantage of the complementary quantitative proteomics, we identify a DNA bound AP-4 protein complex from single-step DNA afftinity purification from crude nuclear extracts. By analyzing the components and functions of the AP-4 protein complex, we are able to deduce the possible repressive mechanisms on HDM2 transcription and the potential role of AP-4 in DNA damaging response. Our findling may shed a light in better understanding the physiological role of AP-4. Finally, we also develop a strategy combining single-step purification and complementary quantitative proteomics for target proteomics study, which provides an alternative MS-based way to study protein complex in the future.

    摘要...I Abstract...III List of Figures...VII List of Tables...VIII List of Plasmids...IX Abbreviations...X Chapter 1:Introduction...1 1.1 Regulation of cellular gene expression by AP-4...1 1.2 Cellular functions of HDM2 and its transcriptional control...3 1.3 Transcriptional repression of HDM2 by AP-4...4 1.4 Quantitative proteomics strategies for protein complex characterization...5 1.4.1 Isotope coded affinity tag (ICAT)...5 1.4.2 Isobaric tags for relative and absolute quantitation (iTRAQ)...6 1.4.3 Complementary quantitative proteomics...7 1.5 Investigation of DNA- bound protein complex by complementary quantitative proteomics...8 1.6 Objectives of the study...9 Chapter 2:Materials and Methods...11 2.1 Chemicals...11 2.2 Cell lines...11 2.3 Plasmids...11 2.4 Purification of His-tagged AP-4...13 2.5 Antibodies...14 2.6 Electrophoretic mobility shift assays (EMSA)...14 2.7 Chromatin immunoprecipitation (ChIP)...15 2.8 Luciferase assays...16 2.9 DNA pull-down assay...17 2.10 cICAT labeling and fractionation by SCX chromatography...18 2.11 iTRAQ labeling and fractionation by SCX chromatography...18 2.12 LC-ESI-MS/MS analysis...19 2.13 Data processing and quantitative analysis...20 2.14 Western blotting...21 Chapter 3: Results ...23 3.1 Purification of His-tagged AP-4 and generation of anti-AP-4 antibody ...23 3.2 Identification of an HDM2-P2 promoter E-box responsible for p53-independent transcriptional repression by AP-4...24 3.3 Identification of HDM2-P2 promoter–bound AP-4 complex components using complementary quantitative proteomics...25 3.4 Functional domains of AP-4 contribute to the repression of HDM2 transcription and AP-4 complex formation...29 3.5 HDAC-independent repression of HDM2 transcription by AP-4...30 Chapter 4:Discussion...33 4.1 MS-based comprehensive identification of DNA-bound protein complex using complementary isotopic labeling methods...33 4.2 Sequence-specific DNA-protein complex formation revealed by biochemical versus MS-based approaches...33 4.3 Functional implications of AP-4 protein complex on HDM2 repression ...35 4.3.1 Passive repression by competition or coordination with other transcription factors...36 4.3.2 Active repression by direct recruitment of repressor molecules...37 4.3.3 Functional involvement of AP-4 in DNA damage response...38 4.4 Contribution of Q/P-rich domain to transcriptional repression...39 Chapter 5:Conclusion...41 References...43 Figures...55 Tables...75 Plasmids...85 Supplementary Information...167

    1. Hu, Y. F., Luscher, B., Admon, A., Mermod, N., and Tjian, R. (1990) Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes Dev. 4, 1741-1752.
    2. Mermod, N., Williams, T. J., and Tjian, R. (1988) Enhancer binding factors AP-4 and AP-1 act in concert to activate SV40 late transcription in vitro. Nature 332, 557-561.
    3. Unk, I., Kiss-Toth, E., and Boros, I. (1994) Transcription factor AP-4 participates in activation of bovine leukemia virus long terminal repeat by p34 Tax. Nucleic Acids Res. 22, 4872-4875.
    4. Ou, S. H., Garcia-Martinez, L. F., Paulssen, E. J., and Gaynor, R. B. (1994) Role of flanking E box motifs in human immunodeficiency virus type 1 TATA element function. J. Virol. 68, 7188-7199.
    5. Friez, M., Hermansen, R., and Milavetz, B. (1999) Chromatin structure of the simian virus 40 late promoter: a deletional analysis. J. Virol. 73, 1990-1997.
    6. Imai, K., and Okamoto, T. (2006) Transcriptional repression of human immunodeficiency virus type 1 by AP-4. J. Biol. Chem. 281, 12495-12505.
    7. Badinga, L., Song, S., Simmen, R. C., and Simmen, F. A. (1998) A distal regulatory region of the insulin-like growth factor binding protein-2 (IGFBP-2) gene interacts with the basic helix-loop-helix transcription factor, AP-4. Endocrine 8, 281-289.
    8. Comb, M., Mermod, N., Hyman, S. E., Pearlberg, J., Ross, M. E., and Goodman, H. M. (1988) Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription. EMBO J. 7, 3793-3805.
    9. Fodor, E., Weinrich, S. L., Meister, A., Mermod, N., and Rutter, W. J. (1991) A pancreatic exocrine cell factor and AP4 bind overlapping sites in the amylase 2A enhancer. Biochemistry 30, 8102-8108.
    10. King-Jones, K., Korge, G., and Lehmann, M. (1999) The helix-loop-helix proteins dAP-4 and Daughterless bind both in vitro and in vivo to SEBP3 sites required for transcriptional activation of the drosophila gene Sgs-4. J. Mol. Biol. 291, 71-82.
    11. Tsujimoto, K., Ono, T., Sato, M., Nishida, T., Oguma, T., and Tadakuma, T. (2005) Regulation of the expression of caspase-9 by the transcription factor activator protein-4 in glucocorticoid-induced apoptosis. J. Biol. Chem. 280, 27638-27644.
    12. Jung, P., Menssen, A., Mayr, D., and Hermeking, H. (2008) AP4 encodes a c-MYC-inducible repressor of p21. Proc. Natl. Acad. Sci. USA 105, 15046-15051.
    13. Xiu, Y., Nakamura, K., Abe, M., Li, N., Wen, X. S., Jiang, Y., Zhang, D., Tsurui, H., Matsuoka, S., Hamano, Y., Fujii, H., Ono, M., Takai, T., Shimokawa, T., Ra, C., Shirai, T., and Hirose, S. (2002) Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. J. Immunol. 169, 4340-4346.
    14. Aranburu, A., Carlsson, R., Persson, C., and Leanderson, T. (2001) Transcription factor AP-4 is a ligand for immunoglobulin-kappa promoter E-box elements. Biochem. J. 354, 431-438.
    15. Andriamanalijaona, R., Felisaz, N., Kim, S. J., King-Jones, K., Lehmann, M., Pujol, J. P., and Boumediene, K. (2003) Mediation of interleukin-1□-induced transforming growth factor □1 expression by activator protein 4 transcription factor in primary cultures of bovine articular chondrocytes: possible cooperation with activator protein 1. Arthritis Rheum. 48, 1569-1581.
    16. Cui, Y., Narayanan, C. S., Zhou, J., and Kumar, A. (1998) Exon-I is involved in positive as well as negative regulation of human angiotensinogen gene expression. Gene 224, 97-107.
    17. Jones, S. (2004) An overview of the basic helix-loop-helix proteins. Genome Biol. 5, 226.
    18. Pieper, U., Eswar, N., Webb, B. M., Eramian, D., Kelly, L., Barkan, D. T., Carter, H., Mankoo, P., Karchin, R., Marti-Renom, M. A., Davis, F. P., and Sali, A. (2009) MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 37, D347-354.
    19. Brownlie, P., Ceska, T., Lamers, M., Romier, C., Stier, G., Teo, H., and Suck, D. (1997) The crystal structure of an intact human Max-DNA complex: new insights into mechanisms of transcriptional control. Structure 5, 509-520.
    20. Littlewood, T. D., and Evan, G. I. (1995) Transcription factors 2: helix-loop-helix. Protein Profile 2, 621-702.
    21. Hong, S. J., Choi, H. J., Hong, S., Huh, Y., Chae, H., and Kim, K. S. (2008) Transcription factor GATA-3 regulates the transcriptional activity of dopamine beta-hydroxylase by interacting with Sp1 and AP4. Neurochem. Res. 33, 1821-1831.
    22. Kim, M.-Y., Jeong, B. C., Lee, J. H., Kee, H. J., Kook, H., Kim, N. S., Kim, Y. H., Kim, J.-K., Ahn, K. Y., and Kim, K. K. (2006) A repressor complex, AP4 transcription factor and geminin, negatively regulates expression of target genes in nonneuronal cells. Proc. Natl. Acad. Sci. USA 103, 13074-13079.
    23. Zhang, and Wang, H. (2000) MDM2 oncogene as a novel target for human cancer therapy. Curr. Pharm. Des. 6, 393-416.
    24. Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997) Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299.
    25. Kubbutat, M. H., Jones, S. N., and Vousden, K. H. (1997) Regulation of p53 stability by Mdm2. Nature 387, 299-303.
    26. Wu, X., Bayle, J. H., Olson, D., and Levine, A. J. (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126-1132.
    27. Prives, C., and Hall, P. A. (1999) The p53 pathway. J. Pathol. 187, 112-126.
    28. Momand, J., Zambetti, G. P., Olson, D. C., George, D., and Levine, A. J. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237-1245.
    29. Chen, J., Marechal, V., and Levine, A. J. (1993) Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13, 4107-4114.
    30. Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., and Pavletich, N. P. (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948-953.
    31. Kubbutat, M. H., Ludwig, R. L., Ashcroft, M., and Vousden, K. H. (1998) Regulation of Mdm2-directed degradation by the C terminus of p53. Mol. Cell. Biol. 18, 5690-5698.
    32. Freedman, D. A., and Levine, A. J. (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18, 7288-7293.
    33. Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T., and Levine, A. J. (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554-564.
    34. Barak, Y., Juven, T., Haffner, R., and Oren, M. (1993) mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461-468.
    35. Oliner, J. D., Pietenpol, J. A., Thiagalingam, S., Gyuris, J., Kinzler, K. W., and Vogelstein, B. (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857-860.
    36. Bae, I., Smith, M. L., Sheikh, M. S., Zhan, Q., Scudiero, D. A., Friend, S. H., O'Connor, P. M., and Fornace, A. J., Jr. (1996) An abnormality in the p53 pathway following gamma-irradiation in many wild-type p53 human melanoma lines. Cancer Res. 56, 840-847.
    37. Chen, C. Y., Oliner, J. D., Zhan, Q., Fornace, A. J., Jr., Vogelstein, B., and Kastan, M. B. (1994) Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc. Natl. Acad. Sci. USA 91, 2684-2688.
    38. Chen, L., Agrawal, S., Zhou, W., Zhang, R., and Chen, J. (1998) Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc. Natl. Acad. Sci. USA 95, 195-200.
    39. Zhang, Z., Li, M., Wang, H., Agrawal, S., and Zhang, R. (2003) Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proc. Natl. Acad. Sci. USA 100, 11636-11641.
    40. Zauberman, A., Flusberg, D., Haupt, Y., Barak, Y., and Oren, M. (1995) A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res. 23, 2584-2592.
    41. Qi, J. S., Yuan, Y., Desai-Yajnik, V., and Samuels, H. H. (1999) Regulation of the mdm2 oncogene by thyroid hormone receptor. Mol. Cell. Biol. 19, 864-872.
    42. Phelps, M., Darley, M., Primrose, J. N., and Blaydes, J. P. (2003) p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor □-positive breast cancer cells. Cancer Res. 63, 2616-2623.
    43. Li, M., Zhang, Z., Hill, D. L., Chen, X., Wang, H., and Zhang, R. (2005) Genistein, a dietary isoflavone, down-regulates the MDM2 oncogene at both transcriptional and posttranslational levels. Cancer Res. 65, 8200-8208.
    44. Wu, L., and Levine, A. J. (1997) Differential regulation of the p21/WAF-1 and mdm2 genes after high-dose UV irradiation: p53-dependent and p53-independent regulation of the mdm2 gene. Mol. Med. 3, 441-451.
    45. Zeng, X., Keller, D., Wu, L., and Lu, H. (2000) UV but not gamma irradiation accelerates p53-induced apoptosis of teratocarcinoma cells by repressing MDM2 transcription. Cancer Res. 60, 6184-6188.
    46. Huang, Q., Raya, A., DeJesus, P., Chao, S. H., Quon, K. C., Caldwell, J. S., Chanda, S. K., Izpisua-Belmonte, J. C., and Schultz, P. G. (2004) Identification of p53 regulators by genome-wide functional analysis. Proc. Natl. Acad. Sci. USA 101, 3456-3461.
    47. Sechi, S., and Oda, Y. (2003) Quantitative proteomics using mass spectrometry. Curr Opin Chem Biol 7, 70-77.
    48. Goshe, M. B., and Smith, R. D. (2003) Stable isotope-coded proteomic mass spectrometry. Curr. Opin. Biotechnol. 14, 101-109.
    49. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994-999.
    50. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154-1169.
    51. Ranish, J. A., Yi, E. C., Leslie, D. M., Purvine, S. O., Goodlett, D. R., Eng, J., and Aebersold, R. (2003) The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33, 349-355.
    52. Patton, W. F. (2002) Detection technologies in proteome analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 771, 3-31.
    53. Julka, S., and Regnier, F. (2004) Quantification in proteomics through stable isotope coding: a review. J. Proteome. Res. 3, 350-363.
    54. DeSouza, L., Diehl, G., Rodrigues, M. J., Guo, J., Romaschin, A. D., Colgan, T. J., and Siu, K. W. (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J. Proteome Res. 4, 377-386.
    55. Tan, H. T., Tan, S., Lin, Q., Lim, T. K., Hew, C. L., and Chung, M. C. M. (2008) Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells. Mol. Cell. Proteomics 7, 1174-1185.
    56. Gingras, A.-C., Aebersold, R., and Raught, B. (2005) Advances in protein complex analysis using mass spectrometry. J. Physiol. 563, 11-21.
    57. Kerrigan, L. A., and Kadonaga, J. T. (1993) Purification of sequence-specific DNA-binding proteins by affinity chromatography. In: Ausubel, F. M., Brent, B., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds. Current Protocols in Molecular Biology, pp. 12.10.11-12.10.18, John Wiley and Sons, New York.
    58. Andrews, N. C., Erdjument-Bromage, H., Davidson, M. B., Tempst, P., and Orkin, S. H. (1993) Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362, 722-728.
    59. Brand, M., Ranish, J. A., Kummer, N. T., Hamilton, J., Igarashi, K., Francastel, C., Chi, T. H., Crabtree, G. R., Aebersold, R., and Groudine, M. (2004) Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat. Struct. Mol. Biol. 11, 73-80.
    60. Kim, B., Nesvizhskii, A. I., Rani, P. G., Hahn, S., Aebersold, R., and Ranish, J. A. (2007) The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. Proc. Natl. Acad. Sci. USA 104, 16068-16073.
    61. Mousson, F., Kolkman, A., Pijnappel, W. W. M. P., Timmers, H. T. M., and Heck, A. J. R. (2008) Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes. Mol. Cell. Proteomics 7, 845-852.
    62. Himeda, C. L., Ranish, J. A., Angello, J. C., Maire, P., Aebersold, R., and Hauschka, S. D. (2004) Quantitative proteomic identification of Six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol. Cell. Biol. 24, 2132-2143.
    63. Himeda, C. L., Ranish, J. A., and Hauschka, S. D. (2008) Quantitative proteomic identification of MAZ as a transcriptional regulator of muscle-specific genes in skeletal and cardiac myocytes. Mol. Cell. Biol. 28, 6521-6535.
    64. Urban, A., Neukirchen, S., and Jaeger, K. E. (1997) A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res. 25, 2227-2228.
    65. Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M., and Werner, T. (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21, 2933-2942.
    66. Chen, Y. R., Juan, H. F., Huang, H. C., Huang, H. H., Lee, Y. J., Liao, M. Y., Tseng, C. W., Lin, L. L., Chen, J. Y., Wang, M. J., Chen, J. H., and Chen, Y. J. (2006) Quantitative proteomic and genomic profiling reveals metastasis-related protein expression patterns in gastric cancer cells. J. Proteome Res. 5, 2727-2742.
    67. Han, C. L., Chien, C. W., Chen, W. C., Chen, Y. R., Wu, C. P., Li, H., and Chen, Y. J. (2008) A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal-dominant polycystic kidney disease. Mol. Cell. Proteomics 7, 1983-1997.
    68. Tsou, C. C., Tsui, Y. H., Yian, Y. H., Chen, Y. J., Yang, H. Y., Yu, C. Y., Lynn, K. S., Sung, T. Y., and Hsu, W. L. (2009) MaXIC-Q Web: a fully automated web service using statistical and computational methods for protein quantitation based on stable isotope labeling and LC-MS. Nucleic Acids Res. 37, W661-669.
    69. Lin, W. T., Hung, W. N., Yian, Y. H., Wu, K. P., Han, C. L., Chen, Y. R., Chen, Y. J., Sung, T. Y., and Hsu, W. L. (2006) Multi-Q: a fully automated tool for multiplexed protein quantitation. J. Proteome Res. 5, 2328-2338.
    70. Li, X. J., Zhang, H., Ranish, J. A., and Aebersold, R. (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 75, 6648-6657.
    71. Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy, J. M., Kinzler, K. W., and Vogelstein, B. (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497-1501.
    72. Wu, W. W., Wang, G., Baek, S. J., and Shen, R. F. (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J. Proteome Res. 5, 651-658.
    73. Kim, L. J., Seto, A. G., Nguyen, T. N., and Goodrich, J. A. (2001) Human TAFII130 is a coactivator for NFATp. Mol. Cell. Biol. 21, 3503-3513.
    74. Gerald Thiel, M. L. M. H. (2004) How mammalian transcriptional repressors work. Eur. J. Biochem. 271, 2855-2862.
    75. Medina, V., Edmonds, B., Young, G. P., James, R., Appleton, S., and Zalewski, P. D. (1997) Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res. 57, 3697-3707.
    76. Naar, A. M., Lemon, B. D., and Tjian, R. (2001) Transcriptional coactivator complexes. Annu. Rev. Biochem. 70, 475-501.
    77. Gadgil, H., Jurado, L. A., and Jarrett, H. W. (2001) DNA affinity chromatography of transcription factors. Anal. Biochem. 290, 147-178.
    78. Kadonaga, J. T. (1991) Purification of sequence-specific binding proteins by DNA affinity chromatography. Methods Enzymol. 208, 10-23.
    79. Yaneva, M., and Tempst, P. (2003) Affinity capture of specific DNA-binding proteins for mass spectrometric identification. Anal. Chem. 75, 6437-6448.
    80. Mitchell, P. J., and Tjian, R. (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371-378.
    81. Mittler, G., Butter, F., and Mann, M. (2009) A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res. 19, 284-293.
    82. Petti, F., Thomson, S., and Haley, J. D. (2006) Peptide, domain, and DNA affinity selection in the identification and quantitation of proteins from complex biological samples. Anal. Biochem. 356, 1-11.
    83. Motohashi, H., Katsuoka, F., Shavit, J. A., Engel, J. D., and Yamamoto, M. (2000) Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins. Cell 103, 865-875.
    84. Nagai, T., Igarashi, K., Akasaka, J., Furuyama, K., Fujita, H., Hayashi, N., Yamamoto, M., and Sassa, S. (1998) Regulation of NF-E2 activity in erythroleukemia cell differentiation. J. Biol. Chem. 273, 5358-5365.
    85. Kim, J.-w., Monila, H., Pandey, A., and Lane, M. D. (2007) Upstream stimulatory factors regulate the C/EBP□□gene during differentiation of 3T3-L1 preadipocytes. Biochem. Biophys. Res. Commun. 354, 517-521.
    86. Lee, D. K., Suh, D., Edenberg, H. J., and Hur, M. W. (2002) POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1. J. Biol. Chem. 277, 26761-26768.
    87. Motohashi, H., Katsuoka, F., Miyoshi, C., Uchimura, Y., Saitoh, H., Francastel, C., Engel, J. D., and Yamamoto, M. (2006) MafG sumoylation is required for active transcriptional repression. Mol. Cell. Biol. 26, 4652-4663.
    88. Garriga-Canut, M., Roopra, A., and Buckley, N. J. (2001) The basic helix-loop-helix protein, SHARP-1, represses transcription by a histone deacetylase-dependent and histone deacetylase-independent mechanism. J. Biol. Chem. 276, 14821-14828.
    89. Naruse, Y., Aoki, T., Kojima, T., and Mori, N. (1999) Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc. Natl. Acad. Sci. USA 96, 13691-13696.
    90. Battaglioli, E., Andres, M. E., Rose, D. W., Chenoweth, J. G., Rosenfeld, M. G., Anderson, M. E., and Mandel, G. (2002) REST repression of neuronal genes requires components of the hSWI.SNF complex. J. Biol. Chem. 277, 41038-41034.
    91. Zhong, Q., Chen, C.-F., Li, S., Chen, Y., Wang, C.-C., Xiao, J., Chen, P.-L., Sharp, Z. D., and Lee, W.-H. (1999) Association of BRCA1 with the hRad50-hMre11-p95 Complex and the DNA Damage Response. Science 285, 747-750.
    92. Zhu, X.-D., Kuster, B., Mann, M., Petrini, J. H. J., and Lange, T. d. (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat. Genet. 25, 347-352.
    93. Bradshaw, P. S., Stavropoulos, D. J., and Meyn, M. S. (2005) Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat. Genet. 37, 193-197.
    94. Wood, R. D. (1996) DNA repair in eukaryotes. Annu. Rev. Biochem. 65, 135-167.
    95. Schreiber, V., Ame, J.-C., Dolle, P., Schultz, I., Rinaldi, B., Fraulob, V., Menissier-de Murcia, J., and de Murcia, G. (2002) Poly(ADP-ribose) Polymerase-2 (PARP-2) Is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 277, 23028-23036.
    96. Hartman, A.-R., and Ford, J. M. (2002) BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat. Genet. 32, 180-184.
    97. Prasad, R., Liu, Y., Deterding, L. J., Poltoratsky, V. P., Kedar, P. S., Horton, J. K., Kanno, S., Asagoshi, K., Hou, E. W., Khodyreva, S. N., Lavrik, O. I., Tomer, K. B., Yasui, A., and Wilson, S. H. (2007) HMGB1 is a cofactor in mammalian base excision repair. Mol. Cell 27, 829-824.
    98. Choy, B., and Green, M. R. (1993) Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 366, 531-536.
    99. Carpenter, B., Hill, K. J., Charalambous, M., Wagner, K. J., Lahiri, D., James, D. I., Andersen, J. S., Schumacher, V., Royer-Pokora, B., Mann, M., Ward, A., and Roberts, S. G. E. (2004) BASP1 is a transcriptional cosuppressor for the Wilms' tumor suppressor protein WT1. Mol. Cell. Biol. 24, 537-549.
    100. Touitou, R., Hickabottom, M., Parker, G., Crook, T., and Allday, M. J. (2001) Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C. J. Virol. 75, 7749-7755.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE