簡易檢索 / 詳目顯示

研究生: 王芃云
Wang, Peng-Yun
論文名稱: 以超快時間解析飛秒雷射光譜研究反-4-硝基均二苯乙烯於溶液中之激發態動態學
Ultrafast Time-Resolved Femtosecond Laser Spectroscopic Studies of Excited State Dynamics of trans-4-Nitrostilbene in Liquid Solutions
指導教授: 鄭博元
Cheng, Po-Yuan
口試委員: 朱立岡
Chu, Li-Kang
高雅婷
Kao, Ya-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 106
中文關鍵詞: 時間解析光譜反-4-硝基均二苯乙烯激發態動態學
外文關鍵詞: trans-4-nitrostilbene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用實驗室自行架設的超快時間解析螢光(time-resolved fluorescence, TRFL)光譜儀、飛秒瞬態吸收(transient absorption, TA)光譜儀以及一套自動化數據擷取電腦程式,研究反-4-硝基均二苯乙烯(trans-4-nitrostilbene, t-NSB)在不同溶劑中的激發態動力學行為。本論文分為兩個主要實驗,其中皆以383 nm之飛秒雷射脈衝激發t-NSB至其S1態,並分別利用超快時間解析螢光(TRFL)光譜和飛秒瞬態吸收(TA)光譜觀察其動力學行為。在超快TRFL光譜中,我們觀察到在極性溶劑中呈現明顯的solvation和振動緩解效應。t-NSB S1態之螢光生命期與溶劑極性相關,在acetonitrile中長達60 ps,而在cyclohexane中僅有0.26 ps。在飛秒TA光譜中,我們觀察到S1態excited state absorption (ESA)光譜以及三重態ESA光譜的演變,其中S1態ESA訊號之動力學可對應上述TRFL光譜所測得之螢光生命期。由於t-NSB S1態生命期與t-stilbene於溶液中的S1態生命期約為同數量級,故我們認為t-NSB在極性溶劑中的S1態生命期可能同時受制於ISC速率和跨越S1→1P*能障之速率,而在非極性溶劑中的S1態生命期則由ISC主導。此外,在TA光譜中也觀察到>2 ns的三重態生命期。在量子化學理論計算中,我們發現t-NSB在高低極性溶劑中的S1態皆為ππ*態,而與其能量較接近的三重態中只有T4態為nπ*態。計算結果也顯示在非極性溶劑中,沿S1緩解途徑S1(ππ*)及T4(nπ*)位能面交叉且又因其間的ISC過程滿足El-Sayed’s rule,因而導致超快速(~250 fs) ISC過程;但在高極性溶劑中S1態因solvation導致能量降低而無法直接ISC到T4態,但可能和經由vibronic coupling而混有T4(nπ*)態特徵的T3(*)或T2(*)態發生較緩慢的ISC。此外,t-NSB S1態經由快速ISC轉進三重態系統後,可能再經由連續快速的內轉換到達T1態,而T1態可無障礙地旋轉中心C=C雙鍵成3P*態,最後再慢慢地緩解至基態的P構型並分道轉回成反式t-NSB或順式c-NSB。


    We study the excited-state dynamics of trans-4-nitrostilbene (t-NSB) in liquid solutions with broadband ultrafast time-resolved fluorescence (TRFL) spectroscopy and femtosecond (fs) transient absorption (TA) spectroscopy. This thesis mainly includes two types of experiments. In both experiments, we directly excited t-NSB to its S1 state with 383 nm fs laser pulses to observe its relaxation dynamics. In ultrafast TRFL experiments, solvation and vibrational relaxation behaviors were clearly observed in polar solvents. The fluorescence lifetime of the S1 state of t-NSB was found to be related to solvent polarity; it is up to 60 ps in acetonitrile and becomes as short as 0.26 ps in cyclohexane. In fs-TA experiments, we observed the evolutions of the excited-state absorption (ESA) spectra of S1 state and triplet states. By analyzing their time-dependent behaviors, we found that the kinetics of the S1-state ESA signal are consistent with the fluorescence lifetimes measured in TRFL experiments. Since the lifetimes of the S1 state of t-NSB in polar solvents are in the same order of magnitude as those of t-stilbene in solutions, we believe that the S1-state lifetimes of t-NSB in polar solvents are determined by both ISC and the S1→1P* barrier crossing rates. In non-polar solvents, the S1 state lifetime is dominated by ISC. In addition, the triplet lifetime (>2 ns) was also observed in the TA spectra. We also carried out quantum chemistry computations to aid in interpretations of experimental data. We found that the S1 state of t-NSB is a ππ* state in both polar and non-polar solvents, and among all nearby triplet states only the T4 state is a nπ*state. The calculated results also show that in non-polar solvents the S1(ππ*) and T4(nπ*) potential energy surfaces intersect along the S1 relaxation pathway, and the ISC between them satisfies the El-Sayed's rule, resulting in an ultrafast (~250 fs) ISC. On the other hand, due to solvation effect in polar solvents the S1 state is energetically unable to undergo ISC to the T4 state. Nonetheless, it may undergo slower ISC to T3(ππ*) or T2(ππ*) states having some mixed n* characteristics via vibronic coupling with the T4(nπ*) state. Once in the triplet system t-NSB can reach the T1 state through rapid sequential internal conversion and rotate the central C=C double bond into the 3P* state, where it slowly relaxes to the 1P state and finally branches back into t-NSB or c-NSB.

    摘要 i Abstract ii 謝誌 iv 目錄 vi 圖目錄 viii 表目錄 xii 第一章 序論 1 1.1 前言 1 1.2 均二苯乙烯之光異構化簡介 2 1.3 4-硝基均二苯乙烯之光化學研究文獻回顧 5 1.4 硝基對化合物激發態動力學之影響 8 1.5 本論文研究目的 10 第二章 實驗系統與技術 12 2.1 超快飛秒雷射系統 12 2.1.1 飛秒雷射產生源 13 2.1.2 能量再生放大器 17 2.2 超快瞬態吸收光譜 23 2.2.1 超快瞬態吸收光譜原理 23 2.2.2 瞬態吸收光譜系統之光路架設 26 2.2.3 瞬態吸收光譜自動化數據擷取系統 28 2.2.4 儀器響應函數 30 2.2.5 瞬態吸收光譜時間延遲校正 32 2.3 超快時間解析螢光光譜 34 2.3.1 Optical Kerr Gating原理 34 2.3.2 時間解析螢光光譜系統之光路架設 36 2.3.2.1 Kerr medium 36 2.3.2.2 攝譜儀 38 2.3.2.3 電子倍增電荷耦合裝置(EMCCD) 38 2.3.2.4 光路架設 40 2.3.3 時間解析螢光光譜自動化數據擷取系統 42 2.3.4 儀器響應函數 44 2.3.5 時間解析螢光光譜靈敏度與時間延遲校正 46 2.4 實驗藥品與樣品配製 49 第三章 以超快時間解析螢光光譜研究反-4-硝基均二苯乙烯於不同溶劑中之激發態動力學 51 3.1 靜態吸收與放光光譜 51 3.2 以383 nm激發之時間解析螢光光譜 56 3.3 理論計算結果 68 第四章 以飛秒瞬態吸收光譜研究反-4-硝基均二苯乙烯於不同溶劑中激發態動力學 77 4.1 以383 nm激發之飛秒瞬態吸收空白實驗 77 4.2 以383 nm激發之飛秒瞬態吸收光譜 81 4.3 理論計算結果 97 第五章 結論 100 參考文獻 103

    1. Gai, F.; Hasson, K. C.; McDonald, J. C.; Anfinrud, P. A., Chemical Dynamics in Proteins : The photoisomerization of retinal in bacteriorhodopsin. SCI. 1998, 279, 1886-1891.
    2. Luecke, H.; Schobert, B.; Cartailler, J. P.; Richter, H. T.; Rosengarth, A.; Needleman, R.; Lanyi, J. K., Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J. Mol. Biol. 2000, 300 (5), 1237-55.
    3. Kandori, H.; Shichida, Y.; Yoshizawa, T., Photoisomerization in rhodopsin. Mosc. 2001, 66 (11), 1197-1209.
    4. Chang, D. C.-F.; Kuramochi, D. H.; Singh, D. M.; Abe-Yoshizumi, D. R.; Tsukuda, P. T.; Kandori, P. H.; Tahara, P. D. T., A unified view on varied ultrafast dynamics of the primary process in microbial rhodopsins. Angew. Chem. 2021.
    5. Gruber, E.; Kabylda, A. M.; Nielsen, M. B.; Rasmussen, A. P.; Teiwes, R.; Kusochek, P. A.; Bochenkova, A. V.; Andersen, L. H., Light driven ultrafast bioinspired molecular motors: steering and accelerating photoisomerization dynamics of retinal. J. Am. Chem. Soc. 2022, 144 (1), 69-73.
    6. Stanoppi, M.; Lorbach, A., Boron-based donor-spiro-acceptor compounds exhibiting thermally activated delayed fluorescence (TADF). Dalton Trans. 2018, 47 (31), 10394-10398.
    7. Chen, Y.-W.; Tsai, C.-C.; Chih, H.-Y.; Tsai, H.-Y.; Wang, W.-Y.; Liu, G.-Y.; Wu, M.-Y.; Chang, C.-H.; Lu, C.-W., Realizing performance improvement of borylated TADF materials for OLEDs. Dyes Pigm. 2022, 197.
    8. Rodriguez-Cordoba, W.; Gutierrez-Arzaluz, L.; Cortes-Guzman, F.; Peon, J., Excited state dynamics and photochemistry of nitroaromatic compounds. ChemComm 2021, 57 (92), 12218-12235.
    9. Olson, A. R., The study of chemical reactions from potential energy diagrams. J. Chem. Soc. Faraday Trans. 1931, 27, 69.
    10. Sajadi, M.; Dobryakov, A. L.; Garbin, E.; Ernsting, N. P.; Kovalenko, S. A., Time-resolved fluorescence spectra of cis-stilbene in hexane and acetonitrile. Chem. Phys. Lett. 2010, 489 (1-3), 44-47.
    11. Görner, H., Cis‐trans photoisomerization of stilbenes and stilbene‐like molecules. Adv. Photochem. 1994, 19, 1-117.
    12. Saltiel, J., Perdeuteriostilbene. The role of phantom states in the cis-trans photoisomerization of stilbenes. J. Am. Chem. Soc. 1967, 89, 1036-1037.
    13. Saltiel, J., Perdeuteriostilbene. The triplet and singlet paths for stilbene photoisomerization. J. Am. Chem. Soc. 1968, 90, 6394-6400.
    14. Hochstrasser, R. M., Picosecond processes in the isomerism of stilbenes. Pure Appl. Chem. 1980, 52, 2683-2691.
    15. Sumitani, M.; Yoshiharao, K., Direct observation of the rate for cis→ trans and trans→ cis photoisomerization of stilbene with picosecond laser photolysis. Bull. Chem. Soc. Jpn. 1982, 55 (1), 85-89.
    16. Sension, R. J.; Repinec, S. T.; Hochstrasser, R. M., Femtosecond laser study of energy disposal in the solution phase isomerization of stilbene. J. Chem. Phys. 1990, 93 (12), 9185-9188.
    17. Waldeck, D. H., Photoisomerization dynamics of stilbenes. Chem. Rev. 1991, 91, 415-436.
    18. Nikowa, L.; Schwarzer, D.; Troe, J.; Schroeder, J., Viscosity and solvent dependence of low‐barrier processes: Photoisomerization of cis‐stilbene in compressed liquid solvents. J. Chem. Phys. 1992, 97 (7), 4827-4835.
    19. Petek, H.; Yoshihara, K.; Fujiwara, Y.; Lin, Z.; Penn, J. H.; Frederick, J. H., Is the nonradiative decay of S1 cis-stilbene due to the dihydrophenanthrene isomerization channel? Suggestive evidence from photophysical measurements on 1,2-dlphenylcycloalkenes. J. Phys. Chem. 1990, 94, 7539-7543.
    20. Nakamura, T.; Takeuchi, S.; Taketsugu, T.; Tahara, T., Femtosecond fluorescence study of the reaction pathways and nature of the reactive S1 state of cis-stilbene. Phys. Chem. Chem. Phys. 2012, 14 (18), 6225–6232.
    21. Baskin, J. S.; Banares, L.; Pedersen, S.; Zewail, A. H., Femtosecond real-time probing of reactions. 20. Dynamics of twisting, alignment, and IVR in the trans-stilbene isomerization reaction. J. Phys. Chem. 1996, 100, 11920-11933.
    22. Kovalenko, S. A.; Dobryakov, A. L.; Ioffe, I.; Ernsting, N. P., Evidence for the phantom state in photoinduced cis–trans isomerization of stilbene. Chem. Phys. Lett. 2010, 493 (4-6), 255-258.
    23. Chen, M. C.; Chen, D. G.; Chou, P. T., Fluorescent chromophores containing the nitro group: relatively unexplored emissive properties. Chempluschem 2021, 86 (1), 11-27.
    24. Schulte-Frohlinde, D.; Görner, H., Cis-trans photoisomerization of 4-nitrostilbenes. Pure Appl. Chem. 1979, 51, 279-297.
    25. Görner, H., Photophysics and photochemistry of trans‐4‐nitrostilbenes and trans‐2,4‐dinitrostilbenes: Effect of intramolecular charge transfer. Ber. Bunsenges. Physik. Chem. 1998, 102 (5), 726-737.
    26. Görner, H., Analysis of the pathways for cis ⇄ trans photoisomerization of 4‐nitro‐,4,4′‐dinitro‐, and 4‐nitro‐4′‐methoxystilbene in solution. Ber. Bunsenges. Physik. Chem. 1984, 88 (12), 1199-1208.
    27. Gurzadyan, G.; Görner, H., Picosecond transient absorption spectroscopy of trans-4-R-4’-nitrostilbenes with R: OMe, NH2 and NMe2. Chem. Phys. Lett. 2000, 319 (1-2), 164-172.
    28. Morales-Cueto, R.; Esquivelzeta-Rabell, M.; Saucedo-Zugazagoitia, J.; Peon, J., Singlet excited-state dynamics of nitropolycyclic aromatic hydrocarbons: direct measurements by femtosecond fluorescence up-conversion. J. Phys. Chem. A 2007, 111 (4), 552–557.
    29. Reichardt, C.; Vogt, R. A.; Crespo-Hernandez, C. E., On the origin of ultrafast nonradiative transitions in nitro-polycyclic aromatic hydrocarbons: excited-state dynamics in 1-nitronaphthalene. J. Chem. Phys. 2009, 131 (22), 224518.
    30. Vogt, R. A.; Reichardt, C.; Crespo-Hernandez, C. E., Excited-state dynamics in nitro-naphthalene derivatives: intersystem crossing to the triplet manifold in hundreds of femtoseconds. J. Phys. Chem. A 2013, 117 (30), 6580–6588.
    31. Rusakowicz, B.; Testa, A. C., Phosphorescence study of nitronaphthalenes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1971, 27 (6), 787–792.
    32. Capellos, C.; Porter, G., J. Chem. Soc., Faraday Trans. 2 1974, 70, 1159–1164.
    33. Braslavsky, S. E., Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure Appl. Chem. 2007, 79 (3), 293-465.
    34. Crespo-Hernandez, C. E.; Burdzinski, G.; Arce, R., Environmental photochemistry of nitro-PAHs: direct observation of ultrafast intersystem crossing in 1-nitropyrene. J. Phys. Chem. A 2008, 112 (28), 6313–6319.
    35. Mohammed, O. F.; Vauthey, E., Excited-state dynamics of nitroperylene in solution: solvent and excitation wavelength dependence. J. Phys. Chem. A 2008, 112 (17), 3823–3830.
    36. Lopez-Arteaga, R.; Stephansen, A. B.; Guarin, C. A.; Solling, T. I.; Peon, J., The influence of push-pull states on the ultrafast intersystem crossing in nitroaromatics. J. Phys. Chem. B 2013, 117 (34), 9947–9955.
    37. 陳冠宇, 以飛秒瞬態吸收光譜研究苯/四氰基乙烯錯合物於極性溶劑中電荷轉移態與局部激發態之電荷轉移動力學. 國立清華大學 2020.
    38. Fleming, G. R., Chemical Applications of Ultrafast Spectroscopy. 1986.
    39. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. 2nd ed.; Plenum Press: New York. 1999.
    40. 邱志忠, 以超快時間解析光學克爾光閘螢光光譜研究分子間與分子內電荷轉移. 國立清華大學 2013.
    41. Kalpouzos, C.; Lotshaw, W. T.; McMorrow, D.; Wallace, G. A. K., J. Phys. Chem. 1987, 91.
    42. Appavoo, K.; Sfeir, M. Y., Enhanced broadband ultrafast detection of ultraviolet emission using optical Kerr gating. Rev. Sci. Instrum. 2000, 71 (9), 3317-3322.
    43. Arzhantsev, S.; Maroncelli, M., Design and characterization of a femtosecond fluorescence spectrometer based on optical Kerr gating. Appl. Spectrosc. 2005, 59 (22), 206-220.
    44. Schmid, P., Isomerization of stilbenes. 1959.
    45. Horng, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M., Subpicosecond measurements of polar solvation dynamics: coumarin 153 revisited. J. Phys. Chem. 1995, 99 (48), 17311-17337.
    46. Cai, Z. L.; Crossley, M. J.; Reimers, J. R.; Kobayashi, R.; Amos, R. D., Density functional theory for charge transfer: The nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J. Phys. Chem. B 2006, 110 (31), 15624-15632.
    47. Penfold, T. J.; Gindensperger, E.; Daniel, C.; Marian, C. M., Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 2018, 118 (15), 6975-7025.
    48. Lorenc, M.; Ziolek, M.; Naskrecki, R.; Karolczak, J.; Kubicki, J.; Maciejewski, A., Artifacts in femtosecond transient absorption spectroscopy. Appl. Phys. B: Lasers Opt. 2002, 74 (1), 19-27.
    49. Snellenburg, J. J., Glotaran: A Java-based graphical user interface for the R package TIMP. J. Stat. Softw. 2012, 49 (3), 1-22.

    QR CODE