簡易檢索 / 詳目顯示

研究生: 郭昱成
Kuo, Yu Cheng
論文名稱: (HfNbSiTaZr)CxNy多元碳氮化物薄膜之結構與性質研究
Microstructure and Properties of Multi-element (HfNbSiTaZr)CxNy coatings
指導教授: 林樹均
Lin, Su Jien
口試委員: 張守一
Chang, Shou Yi
李勝隆
Lee, Sheng Long
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 127
中文關鍵詞: 高熵合金薄膜
外文關鍵詞: High entropy alloy, Thin film
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以反應式射頻磁控濺鍍法製備HfNbSiTaZr多元碳氮化物薄膜,探討不同甲烷與氮氣流率以及施加不同基板偏壓後對薄膜微結構、機械性質及磨耗性質的影響。實驗結果顯示在未施加基板偏壓下,多元碳氮化物薄膜均呈現FCC固溶結構,在碳含量約為 37.3 at%,氮含量約為 18.0 at%的薄膜中,有較高的硬度27.3 GPa且較低的摩擦係數0.39。以此成分的薄膜為基礎,施加基板偏壓後,薄膜仍維持FCC固溶結構,結構變得更緻密;硬度雖沒有提升,但在球對盤磨耗試驗中,摩擦係數降至0.15,磨耗速率降至0.2 × 106 mm3/Nm。大氣退火方面,薄膜施加偏壓 50 V且在退火溫度 500 C時,氧化層厚度最薄約 226 nm。由此可見,與歷屆學長姐的碳氮化物薄膜相比,在摩擦係數與磨耗速率有較好的表現。


    Multi-element carbon nitride films based on high-entropy alloys have received lots of attention. In this study, multielement (HfNbSiTaZr) carbon nitride films were designed and deposited at 400 ℃on Si wafers by RF reactive magnetron sputtering in the gaseous mixture Ar + N2 + CH4. By changing nitrogen flow ratio, methane flow ratio and substrate bias, crystal structure, microstructure, hardness and oxidation resistance have been investigated.
    The results of crystal structure indicate that films with substrate bias or without substrate bias all exhibit FCC structure. Besides, the films with the increasing substrate bias contain denser microstructure but decreasing hardness. In ball-on-disc wearing test, the coatings increasing substrate bias show lower friction coefficient 0.15 and lower wearing rate 0.2 × 106 mm3/Nm. In addition, the film of 50 V substrate bias has good oxidation resistance. After the air annealing at 500 C for 2 h, the oxide layer is just 226 nm on the surface of the coating.
    The research illustrates the excellent potential of multi-element (HfNbSiTaZr) carbon nitride coating for industrial applications.

    Abstract I 摘 要 II 誌 謝 III 目 錄 VIII 表目錄 XII 圖目錄 XIV 第一章 前言與研究目的 1 1-1前言 1 1-2研究目的 3 第二章 文獻回顧 5 2-1硬質薄膜 5 2-1.1表面薄膜介紹 5 2-1.2氮化物薄膜發展 7 2-1.3碳化物與碳氮化物硬質薄膜發展 7 2-2高熵合金 11 2-2.1高熵合金定義 11 2-2.2高熵合金的特點 13 2-2.3高熵合金薄膜之研究 15 2-3射頻磁控濺鍍原理 18 2-3.1濺鍍原理 18 2-3.2射頻濺鍍 21 2-3.3磁控濺鍍 22 2-3.4反應式濺鍍 24 第三章 實驗方法與步驟 27 3-1實驗設計 27 3-2材料準備 31 3-2.1靶材 31 3-2.2基板 31 3-2.3製程氣體 31 3-2.4磨球 32 3-3 實驗參數及步驟 35 3-4薄膜性質分析與量測 40 3-4.1靶材與薄膜成份分析 40 3-4.2靶材晶體結構分析 40 3-4.3薄膜晶體結構分析 40 3-4.4薄膜表面及截面形貌分析 41 3-4.5薄膜硬度及楊氏模數分析 41 3-4.6薄膜鍵結分析 41 3-4.7薄膜抗氧化分析 42 3-4.8薄膜附著性質分析 42 3-4.9薄膜抗磨耗性質分析 43 第四章 結果與討論 46 4-1碳氮化物薄膜之結構與性質 48 4-1.1高熵合金靶材之成份與結構分析 48 4-1.2高熵合金碳氮化物薄膜之鍍率分析 51 4-1.3高熵合金碳氮化物薄膜之成份分析 53 4-1.4高熵合金碳氮化物薄膜之晶體結構 55 4-1.5高熵合金碳氮化物薄膜之表面形貌 58 4-1.6高熵合金碳氮化物薄膜之鍵結分析 61 4-1.7高熵合金碳氮化物薄膜之硬度與楊氏模數 66 4-2高熵合金碳氮化物薄膜在不同基板偏壓下之結構與性質 68 4-2.1高熵合金碳氮化物薄膜在不同基板偏壓下之鍍率分析 68 4-2.2高熵合金碳氮化物薄膜在不同基板偏壓下之成份分析 70 4-2.3高熵合金碳氮化物薄膜在不同基板偏壓下之晶體結構 72 4-2.4高熵合金碳氮化物薄膜在不同基板偏壓下之表面形貌 74 4-2.5高熵合金碳氮化物薄膜在不同基板偏壓下之硬度及楊氏模數 76 4-3碳氮化物薄膜在不同基板偏壓下之抗氧化性質 78 4-4高熵合金碳氮化物薄膜之附著性質 82 4-4.1高熵合金碳氮化物薄膜在未加基板偏壓之附著性質 83 4-4.2高熵合金碳氮化物薄膜在不同基板偏壓下之附著性質 90 4-5高熵合金碳氮化物薄膜之抗磨耗性質 96 4-5.1未加基板偏壓下碳氮化物薄膜之抗磨耗性質 97 4-5.2基板偏壓對碳氮化物薄膜磨耗性質的影響 107 4-5.3碳氮化物薄膜磨耗性質與實驗室歷屆成果比較 114 第五章 結論與未來研究方向 116 5-1結論 116 5-2未來研究方向 118 第六章 參考文獻 119

    [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Advanced Engineering Materials 6(5) (2004) 299.
    [2] 葉均蔚、陳瑞凱,“高熵合金”,科學發展 377 (2004) 16.
    [3] 蔡銘洪,“多元高熵合金薄膜微結構及電性演變之研究”,國立清華大學材料科學工程研究所碩士論文 (2003).
    [4] G. Zhang, B. Li, B. Jiang, F. Yan, and D. Chen, "Microstructure and tribological properties of TiN, TiC and Ti(C, N) thin films prepared by closed-field unbalanced magnetron sputtering ion plating," Applied Surface Science, vol. 255, pp. 8788-8793, 8/15/ 2009.
    [5] 劉庭瑋,“多元碳化物薄膜及多元碳氮化物薄膜之結構與性質研究”,國立清華大學材料科學工程研究所碩士論文 (2009).
    [6] 林季薇,“多元碳化物 (CrNbSiTiZr)Cx 鍍膜之結構與性質研究”,國立清華大學材料科學工程研究所碩士論文 (2010).
    [7] 黃志維,“不同甲烷流率對反應式濺鍍 (CrNbSiTiZr)Cx 鍍膜結構與性質之影響”,國立清華大學材料科學工程研究所碩士論文 (2011).
    [8] 陳思寰,“ (CrNbTaTiZr)Cx 薄膜的機械性質與微結構之研究”,國立清華大學材料科學工程研究所碩士論文 (2012).
    [9] 許凱閔,“(HfNbSiTaZr)CXNy 多元碳氮化物薄膜之結構與性質研究” ,國立清華大學材料科學工程研究所碩士論文 (2015)
    [10] T. Zehnder, J. Matthey, P. Schwaller, A. Klein, P.-A. Steinmann, and J. Patscheider, "Wear protective coatings consisting of TiC–SiC–aC: H deposited by magnetron sputtering," Surface and Coatings Technology, vol. 163, pp. 238-244, 2003.
    [11] D. Martínez-Martínez, C. López-Cartes, A. Fernández, and J. Sánchez-López, "Influence of the microstructure on the mechanical and tribological behavior of TiC/aC nanocomposite coatings," Thin Solid Films, vol. 517, pp. 1662-1671, 2009.
    [12] J. Musil and J. Vlček, "Magnetron sputtering of hard nanocomposite coatings and their properties," Surface and Coatings Technology, vol. 142, pp. 557-566, 2001.
    [13] S. PalDey and S. Deevi, "Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review," Materials Science and Engineering: A, vol. 342, pp. 58-79, 2003.
    [14] R. Wuhrer and W. Yeung, "A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings," Scripta materialia, vol. 50, pp. 1461-1466, 2004.
    [15] D. Monaghan, D. Teer, K. Laing, I. Efeoglu, and R. Arnell, "Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering," Surface and coatings technology, vol. 59, pp. 21-25, 1993.
    [16] J. Musil, P. Zeman, H. Hrubý, and P. Mayrhofer, "ZrN/Cu nanocomposite film—a novel superhard material," Surface and Coatings Technology, vol. 120, pp. 179-183, 1999.
    [17] M. Shinn, L. Hultman, and S. Barnett, "Growth, structure, and microhardness of epitaxial TiN/NbN superlattices," Journal of materials research, vol. 7, pp. 901-911, 1992.
    [18] D.-J. Kim, Y.-R. Cho, M.-J. Lee, J.-M. Hong, Y.-K. Kim, and K.-H. Lee, "Properties of TiN–TiC multilayer coatings using plasma-assisted chemical vapor deposition," Surface and Coatings Technology, vol. 116, pp. 906-910, 1999.
    [19] J. Vacı́k, J. Červená, V. Hnatowicz, S. Pošta, D. Fink, R. Klett, et al., "Simple technique for characterization of ion-modified polymeric foils," Surface and Coatings Technology, vol. 123, pp. 97-100, 2000.
    [20] C.-L. Chang, J.-H. Chen, P.-C. Tsai, W.-Y. Ho, and D.-Y. Wang, "Synthesis and characterization of nano-composite Ti–Si–N hard coating by filtered cathodic arc deposition," Surface and Coatings Technology, vol. 203, pp. 619-623, 2008.
    [21] S. Vepřek, S. Reiprich, and L. Shizhi, "Superhard nanocrystalline composite materials: the TiN/Si3N4 system," Applied physics letters, vol. 66, pp. 2640-2642, 1995.
    [22] H. Holleck, C. Kühl, and H. Schulz, "Wear resistant carbide–boride composite coatings," Journal of Vacuum Science & Technology A, vol. 3, pp. 2345-2347, 1985.
    [23] J. Musil, P. Karvankova, and J. Kasl, "Hard and superhard Zr–Ni–N nanocomposite films," Surface and Coatings Technology, vol. 139, pp. 101-109, 2001.
    [24] J. Wheeler, R. Raghavan, V. Chawla, M. Morstein, and J. Michler, "Deformation of Hard Coatings at Elevated Temperatures," Surface and Coatings Technology, vol. 254, pp. 382-387, 2014.
    [25] A. Hörling, L. Hultman, M. Odén, J. Sjölén, and L. Karlsson, "Mechanical properties and machining performance of Ti 1− x Al x N-coated cutting tools," Surface and Coatings Technology, vol. 191, pp. 384-392, 2005.
    [26] M. Lindquist, O. Wilhelmsson, U. Jansson, and U. Wiklund, "Tribofilm formation from TiC and nanocomposite TiAlC coatings, studied with focused ion beam and transmission electron microscopy," Wear, vol. 266, pp. 988-994, 2009.
    [27] O. Wilhelmsson, M. Råsander, M. Carlsson, E. Lewin, B. Sanyal, U. Wiklund, et al., "Design of Nanocomposite Low‐Friction Coatings," Advanced Functional Materials, vol. 17, pp. 1611-1616, 2007.
    [28] M. Lindquist, O. Wilhelmsson, U. Jansson, and U. Wiklund, "Tribofilm formation and tribological properties of TiC and nanocomposite TiAlC coatings," Wear, vol. 266, pp. 379-387, 2009.
    [29] V. Braic, A. Vladescu, M. Balaceanu, C. Luculescu, and M. Braic, "Nanostructured multi-element (TiZrNbHfTa) N and (TiZrNbHfTa) C hard coatings," Surface and Coatings Technology, vol. 211, pp. 117-121, 2012.
    [30] 辜文柏, "(AlCrTaTiZr)(CN) 薄膜結構及性質之研究," 清華大學材料科學工程學系學位論文, 2008.
    [31] R. K. Waits, "Planar magnetron sputtering," Journal of Vacuum Science & Technology, vol. 15, pp. 179-187, 1978.
    [32] 賴加瀚, "Al-Cr-Ta-Ti-Zr-N 多元氮化物薄膜之製備與性質研究," 2007.
    [33] R. Mason and M. Pichilingi, "Sputtering in a glow discharge ion source-pressure dependence: theory and experiment," Journal of Physics D: Applied Physics, vol. 27, p. 2363, 1994.
    [34] F. R. De Boer, W. Mattens, R. Boom, A. Miedema, and A. Niessen, Cohesion in metals, 1988.
    [35] 蔡佳凌, "反應式直流磁控濺鍍法製備 (Al, Cr, Nb, Si, B, C) 100-xNx 高熵薄膜之研究," 清華大學材料科學工程學系學位論文, 2014.
    [36] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of materials research, vol. 7, pp. 1564-1583, 1992.
    [37] M. E. Schlesinger, "The Si-Ta (silicon-tantalum) system," Journal of phase equilibria, vol. 15, pp. 90-95, 1994.
    [38] A. Voevodin and J. Zabinski, "Load-adaptive crystalline–amorphous nanocomposites," Journal of materials Science, vol. 33, pp. 319-327, 1998.
    [39] J. Lin, J. Moore, B. Mishra, M. Pinkas, and W. Sproul, "Syntheses and characterization of TiC/a: C composite coatings using pulsed closed field unbalanced magnetron sputtering (P-CFUBMS)," Thin Solid Films, vol. 517, pp. 1131-1135, 2008.
    [40] C.-H. Lai, S.-J. Lin, J.-W. Yeh, and A. Davison, "Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr) N coatings," Journal of Physics D: Applied Physics, vol. 39, p. 4628, 2006.
    [41] D. Mattox, "Particle bombardment effects on thin‐film deposition: A review," Journal of Vacuum Science & Technology A, vol. 7, pp. 1105-1114, 1989.
    [42] F. Vaz, L. Rebouta, S. Ramos, M. da Silva, and J. Soares, "Physical, structural and mechanical characterization of Ti1− xSix Ny films," Surface and Coatings Technology, vol. 108, pp. 236-240, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE