研究生: |
許世華 Shih-Hua Hsu |
---|---|
論文名稱: |
鋅腐蝕及電鍍鋅極製程之研究-鋅鎳電池及鋅空氣電池之性質與電化學循環充放電行為之研究 A study of zinc corrosion and electrodeposition- properties of Zn-Ni battery and Zn-Air battery |
指導教授: |
陳建瑞
Jiann-Ruey Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 鋅電極 、添加劑 、鋅空氣電池 、鋅鎳電池 、空氣電極 |
外文關鍵詞: | zinc electrode, additive, zinc air battery, Zn-Ni battery, air electrode |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋅具有高電容量以及價格便宜的特性,所以鋅電極在二次電池的應用上,在近幾年格外受到重視。然而鋅電極在實際應用方面卻有一些缺點,諸如鋅在高濃度的鹼性溶液中的腐蝕現象,以及放電後所生成的氧化鋅溶解於電解液中的問題,將使得電容量的下降,另外還有提升在循環充放電時放電電容量的穩定性等等。
本實驗在探討鋅腐蝕方面,所使用的電解液為5M、6M及7M各種不同含有飽和鋅離子的高濃度氫氧化鉀水溶液,以及添加添加劑EDTA、poly ethylene glycol(PEG)200、poly ethylene glycol(PEG)300和poly ethylene glycol(PEG)600等。而在測試電池循環壽命時所採用的負極電極,乃以自行電鍍的方式製作的鋅電極,所使用的電解液與測試鋅腐蝕所使用的電解液相同,以期希望所採用的電解液能具防止鋅腐蝕,及又能同時兼具電池在進行充放電時,能更加維持電池的放電電容量的功能。
其結果顯示出在鋅的防腐蝕方面,添加入具有越高平均分子量的PEG,所顯現出來的防腐蝕效果會越佳。在循環壽命方面,經過一系列的充放電測試及與鋅腐蝕實驗的比較中發現,在含有飽和鋅離子的6M高濃度氫氧化鉀水溶液中,添加0.8wt%EDTA及0.2wt% poly ethylene glycol(PEG) (600)所呈現出來的效果,會具有維持高的放電電容量,因而獲得改善。
接下來我們將電鍍製成的鋅電極,置入含有在飽和鋅離子中添加入0.8wt%EDTA及0.2wt% poly ethylene glycol(PEG) (600)的6M高濃度氫氧化鉀水溶液裡,再進行不同的充電模式,以期能找出最適當的電池充放電時的最佳條件。進行此實驗時,充電以100mA,200mA,及300mA各種不同的定充電電流條件,放電的條件則統一以150mA的放電電流放電,結果顯示在較高的充電電流時,所表現出來的維持放電電容量的效果最佳。
再將我們運用電鍍製作的鋅極,應用在鋅空氣電池方面時,其放電電容量高達573mAh/g。另外,我們也做了一些鋅空氣電池的極化方面的研究,在定電流放電時,其放電電流為1mA,5mA,10mA及20mA,對電壓極化的影響。
Because zinc has high energy capacity and very cheap, we focus on its application for secondary battery in recent years. But there are some disadvantages for zinc electrode on actual application such as: zinc corrosion in concentrated alkaline solutions and zinc oxide produced after discharging dissolved in electrolyte, it will lower energy capacity.
The purpose of this study is to discuss zinc corrosion while using electrolyte which was made by 5M,6M and 7M concentrated potassium hydroxide solution and some additives :EDTA, poly ethylene glycol(PEG)200, poly ethylene glycol(PEG)300 and poly ethylene glycol(PEG)600 etc. The negative electrodes using in testing cycle life of battery were made by electrodeposition and the electrolytes were the same as using in zinc corrosion. We expect our electrolyte has two function of preventing zinc corrosion and maintaining discharge capacity.
Our result shows that higher average molecule weight of poly ethylene glycol has better preventing zinc corrosion. After a series of cycle life testing, it shows that 0.8%wt EDTA and 0 .2%wt poly ethylene glycol (600) added in 6M concentrated potassium hydroxide solution saturated by zinc oxide has good performance for maintaining high discharge capacity.
We put zinc electrode which is made by electrodeposition in 6M concentrated potassium hydroxide solution saturated by zinc oxide and added by 0.8%wt EDTA and 0 .2%wt poly ethylene glycol (600) in some different conditions, charged by several current 100mA, 200mA and 300mA and discharged by the same current, 0.15A, in order to find out the suitable condition for cycling. It shows that higher charging current has better performance for keeping discharge capacity.
Finally, we use zinc electrode which is made by electrodeposition in zinc-air battery application, it has discharge capacity, 573mAh/g. For testing polarization on zinc-air battery, we change some different constant discharge current, 1mA, 5mA, 10mA and 20mA to measuring the effects of battery voltage.
文獻回顧
[1] Frank R. McLarnon, J. Electrochem. Soc., 138(1991) 645.
[2] 吉澤四郎, ”最新電池工學”,復漢出版社(2000).
[3] 資料來源:工業材料142期
[4] 陳瑞凱, “鋅空氣電池鋅電極回收之模擬與製程研究期末報告”, 1999
鋅腐蝕緒論
[1] T. P. Dirkse, J. Electrochem. Soc., 116 (1969) 162.
[2] R. E. F. Einerhand, J. Applied Electrochem., 18 (1988) 779.
[3] Yuichi Sato, J. Power Sources, 38 (1992) 317.
[4] Ming Cai, J. Electrochem. Soc., 143 (1996) 2125
[5] R. Shivkumar, J. Power Sources, 75 (1998) 90.
[6] R. Ramanauskas, Corrosion Sience, 40 (1998) 401.
[7] E. Frackowiak, J. Power Sources, 73 (1998) 175.
[8] T. S. Lee, J. Electrochem. Soc., 122 (1975) 171.
[9] Visalakshi Ravindran, J. Power Sources, 55 (1995) 237.
[10] A. R. Suresh Kannan, J. Power Sources, 57 (1995) 93.
[11] G. Juhel, Electrochimica. Acta,35 (1990) 479.
[12] Kevin G. Boto, J. Electrochem. Soc., 77(1997) 1
[13] V. K. Nartey, J. Power Sources,52 (1994) 217.
[14] Barbara Szczesniak, J. Power Sources,75 (1998) 130.
鋅空氣電極緒論
鋅電極
[1] T. P. Dirkse, J. Electrochem. Soc., 101 (1954) 328.
[2] J. S. Fordyce, J. Chem. Phys., 43 (1965) 843.
[3] G. H. Newman, J. Chem. Phys., 43 (1965) 2744.
[4] R. Shivkumar, J. Power Sources, 75 (1998) 90.
[5] R. Shivkumar, J. Power Sources, 55 (1995) 53.
[6] Visalakshi Ravindran, J. Power Sources, 55 (1995) 237.
[7] G. T. Rogers, J. Electroanal. Chem. 167 (1984) 251.
[8] R. E. F. Einerhand, J. Applied Electrochem., 18 (1988) 779.
[9] J. Electrochem. Soc., 119 (1972) 1649.
[10] T. Katan, J. Electrochem. Soc., 126 (1979) 1835.
[11] 蘇葵陽, “實用電鍍理論與實際”, 復文書局(1999)
空氣電極
[1] Zidong Wei, J. Power Sources, 91 (2000) 83.
[2] Korovin N. V., “俄國金屬-空氣電池發展現況及展望”,第二屆金屬-空氣電池技術國際研討會, 台灣台北,(2000)
[3] 蔡聖同, “鋅-空氣電池及其空氣電極的研究”, 第二屆金屬-空氣電池技術國際研討會, 台灣台北,(2000)